Halcon深度学习——奇异值检测

该方法属于无监督式的深度学习方法,优点:

  1 无需标注

  2 只训练正样本

  3 可以在CPU下进行训练

  4 具有较快的推断速度

适用场景:适合缺陷较为明显的项目

注意:设置的ImageWidth、ImageHeight ,以及自己采的图,尽量是32的倍数

精确率和召回率说明

 

召回率(recall) == 92.1%,意味着ok图中7.9%被预测为ng
精确率(precision) =79.8%,意味着被认为是ok的图中有20.2%的ng图,即ng容易被检测成ok

 主对角线数值越大越好,副对角线数值越小越好。47个OK被误判为ng,3个ng被误判为OK

dev_update_off ()
dev_close_window ()
set_system ('seed_rand', 25)
* 
* 
*----------------------------- 0.) 样本、保存模型路径 -----------------------*
* 
* 训练只需ok文件夹,其他文件夹用于之后的评估
* 
* 路径及子文件夹名
ImageDir := 'E:/整条'
ImageSubDirs := ['ok','ng']
* 
* 缺陷区域的二值图路径(无)
AnomalyDir := []
* 
* 所有样本预处理后的保存路径
OutputDir := ImageDir+'/anomaly_output_data'
* 模型的保存路径+模型名
ModelFileFullName := ImageDir+'/model_final.hdl' 
* ********************** 自己需要设定的值 ****************** *
* 数据集特定的预处理
ExampleSpecificPreprocessing := true
* 缩放后的大小(32的倍数)
ImageWidth := 320
ImageHeight := 320
* 复杂度,越大准确率越高,训练越耗时
Complexity := 15
* Complexity := 30
* 
*----------------------------- 1.) 读取、拆分样本集 DLDataset -----------------------*
create_dict (GenParamDataset)
set_dict_tuple (GenParamDataset, 'image_sub_dirs', ImageSubDirs)
read_dl_dataset_anomaly (ImageDir, AnomalyDir, [], [], GenParamDataset, DLDataset)
* 拆分样本集为训练集(60%)、验证集(20%)、测试集(剩余的20%)
split_dl_dataset (DLDataset, 60, 20, [])
* 
* 加载预训练模型、设置参数
read_dl_model ('initial_dl_anomaly_medium.hdl', DLModelHandle)
*read_dl_model ('initial_dl_anomaly_large.hdl', DLModelHandle)
set_dl_model_param (DLModelHandle, 'image_width', ImageWidth)
set_dl_model_param (DLModelHandle, 'image_height', ImageHeight)
set_dl_model_param (DLModelHandle, 'complexity', Complexity)
*set_dl_model_param (DLModelHandle, 'runtime', 'cpu')
set_dl_model_param (DLModelHandle, 'runtime', 'gpu')
set_dl_model_param (DLModelHandle, 'runtime_init', 'immediately')
* 设置预处理参数,并进行预处理
create_dict (PreprocessSettings)
set_dict_tuple (PreprocessSettings, 'overwrite_files', true)
create_dl_preprocess_param ('anomaly_detection', ImageWidth, ImageHeight, 3, [], [], 'constant_values', 'full_domain', [], [], [], [], DLPreprocessParam)
preprocess_dl_dataset (DLDataset, OutputDir, DLPreprocessParam, PreprocessSettings, DLDatasetFileName)
* 
* 获取样本集DLDataset中的样本
get_dict_tuple (DLDataset, 'samples', DatasetSamples)
if (ExampleSpecificPreprocessing)
    read_dl_samples (DLDataset, [0:|DatasetSamples| - 1], DLSampleBatch)
    preprocess_dl_samples_bottle(DLSampleBatch)
    write_dl_samples (DLDataset, [0:|DatasetSamples| - 1], DLSampleBatch, [], [])
endif
* 
* 展示10个随机预处理后的 DLSamples
create_dict (WindowDict)
for Index := 0 to 9 by 1
    SampleIndex := int(rand(1) * |DatasetSamples|)
    read_dl_samples (DLDataset, SampleIndex, DLSample)
    dev_display_dl_data (DLSample, [], DLDataset, 'anomaly_ground_truth', [], WindowDict)
    dev_disp_text ('Press Run (F5) to continue', 'window', 'bottom', 'right', 'black', [], [])
    * 
    get_dict_tuple (WindowDict, 'anomaly_ground_truth', WindowHandles)
    dev_set_window (WindowHandles[0])
    dev_disp_text ('Preprocessed image', 'window', 'top', 'left', 'black', [], [])
    * 
    *stop ()
endfor
dev_close_window_dict (WindowDict)
* 
*stop ()
* 
*----------------------------- 2.) 训练 DLDataset -----------------------*
*--- 设置训练参数
* 是否展示训练过程
EnableDisplay := true
* 设置训练终止条件,错误率、次数,满足其一则终止
ErrorThreshold := 0.001
MaxNumEpochs := 15
* 训练集中用于训练的样本比
*DomainRatio := 0.25
DomainRatio := 0.75
* 正则化噪声,使得训练更健壮。为防止训练失败,可以设置大些
RegularizationNoise := 0.01
* 创建字典,并存储键-值对
create_dict (TrainParamAnomaly)
set_dict_tuple (TrainParamAnomaly, 'regularization_noise', RegularizationNoise)
set_dict_tuple (TrainParamAnomaly, 'error_threshold', ErrorThreshold)
set_dict_tuple (TrainParamAnomaly, 'domain_ratio', DomainRatio)
*--- 创建训练参数
create_dl_train_param (DLModelHandle, MaxNumEpochs, [], EnableDisplay, 73, 'anomaly', TrainParamAnomaly, TrainParam)
*--- 开始训练
train_dl_model (DLDataset, DLModelHandle, TrainParam, 0, TrainResults, TrainInfos, EvaluationInfos)
dev_disp_text ('Press Run (F5) to continue', 'window', 'bottom', 'right', 'black', [], [])
stop ()
* 
dev_close_window ()
* 
* 保存模型
write_dl_model (DLModelHandle, ModelFileFullName)
* 
* 
*----------------------------- 3.) 评估模型(计算得到分类、分割的阈值) -----------------------*
* 标准差因子(如果缺陷很小,推荐较大值)
StandardDeviationFactor := 1.0
* 往字典DLModelHandle里存储键-值对
set_dl_model_param (DLModelHandle, 'standard_deviation_factor', StandardDeviationFactor) 
* 计算阈值
create_dict (GenParamThreshold)
set_dict_tuple (GenParamThreshold, 'enable_display', 'true')
compute_dl_anomaly_thresholds (DLModelHandle, DLDataset, GenParamThreshold, AnomalySegmentationThreshold, AnomalyClassificationThresholds)
dev_disp_text ('Press Run (F5) to continue', 'window', 'bottom', 'right', 'black', [], [])
stop ()
* 
dev_close_window ()
* 
* 设置评估参数,在test集上进行评估
create_dict (GenParamEvaluation)
set_dict_tuple (GenParamEvaluation, 'measures', 'all')
set_dict_tuple (GenParamEvaluation, 'anomaly_classification_thresholds', AnomalyClassificationThresholds)
evaluate_dl_model (DLDataset, DLModelHandle, 'split', 'test', GenParamEvaluation, EvaluationResult, EvalParams)
* 
* 要展示的参数
create_dict (GenParamDisplay)
* 直方图、图例
set_dict_tuple (GenParamDisplay, 'display_mode', ['score_histogram','score_legend'])
create_dict (WindowDict)
dev_display_anomaly_detection_evaluation (EvaluationResult, EvalParams, GenParamDisplay, WindowDict)
dev_disp_text ('Press Run (F5) to continue', 'window', 'bottom', 'right', 'black', 'box', 'true')
stop ()
* 
dev_close_window_dict (WindowDict)
* 
* 可视化precision精确率, recall召回率, and confusion matrix
set_dict_tuple (GenParamDisplay, 'display_mode', ['pie_charts_precision','pie_charts_recall','absolute_confusion_matrix'])
* 展示 AnomalyClassificationThresholds 中的一个阈值(第三个)
set_dict_tuple (GenParamDisplay, 'classification_threshold_index', 2)
create_dict (WindowDict)
dev_display_anomaly_detection_evaluation (EvaluationResult, EvalParams, GenParamDisplay, WindowDict)
dev_disp_text ('Press Run (F5) to continue', 'window', 'bottom', 'right', 'black', [], [])
stop ()
* 
dev_close_window_dict (WindowDict)
* 
* 
*----------------------------- 4.) 测试 -----------------------*
*** read_dl_model(ModelFullName, DLModelHandle)
************************ 测试的样本,随机的10个ng图(低于10以实际为准)
*list_image_files (ImageDir + '/' + ImageSubDirs, 'default', 'recursive', ImageFiles)
list_image_files (ImageDir + '/' + 'ng', 'default', 'recursive', ImageFiles)
* 打乱数据集
tuple_shuffle (ImageFiles, ImageFilesShuffled)
* 设置阈值(模型训练后得到)
InferenceClassificationThreshold := AnomalyClassificationThresholds[2]
InferenceSegmentationThreshold := AnomalySegmentationThreshold
* 
* 创建类别标签字典(不起作用,但是必须有)
create_dict (DLDatasetInfo)
set_dict_tuple (DLDatasetInfo, 'class_names', ['ok','ng'])
set_dict_tuple (DLDatasetInfo, 'class_ids', [0,1])
* 创建字典,承载窗体信息
create_dict (WindowDict)
for IndexInference := 0 to min2(|ImageFilesShuffled|,10) - 1 by 1
    * 读图
    read_image (Image, ImageFilesShuffled[IndexInference])
    gen_dl_samples_from_images (Image, DLSample)
    preprocess_dl_samples(DLSample, DLPreprocessParam)
    * 与训练时相同的特定处理
    if (ExampleSpecificPreprocessing)
        preprocess_dl_samples_bottle (DLSample)
    endif
    * 
    apply_dl_model (DLModelHandle, DLSample, [], DLResult)
    threshold_dl_anomaly_results (InferenceSegmentationThreshold, InferenceClassificationThreshold, DLResult)
    * 展示结果
    dev_display_dl_data (DLSample, DLResult, DLDatasetInfo, ['anomaly_result','anomaly_image'], [], WindowDict)
    dev_disp_text ('Press F5 (continue)', 'window', 'bottom', 'center', 'black', [], [])
    stop ()
endfor
* 
************************ 测试的样本,随机的10个ok图(低于10以实际为准)
list_image_files (ImageDir + '/' + 'ok', 'default', 'recursive', ImageFiles)
tuple_shuffle (ImageFiles, ImageFilesShuffled)
for IndexInference := 0 to min2(|ImageFilesShuffled|,10) - 1 by 1
    read_image (Image, ImageFilesShuffled[IndexInference])
    gen_dl_samples_from_images (Image, DLSample)
    preprocess_dl_samples(DLSample, DLPreprocessParam)
    if (ExampleSpecificPreprocessing)
        preprocess_dl_samples_bottle (DLSample)
    endif
    apply_dl_model (DLModelHandle, DLSample, [], DLResult)
    threshold_dl_anomaly_results (InferenceSegmentationThreshold, InferenceClassificationThreshold, DLResult)
    dev_display_dl_data (DLSample, DLResult, DLDatasetInfo, ['anomaly_result','anomaly_image'], [], WindowDict)
    dev_disp_text ('Press F5 (continue)', 'window', 'bottom', 'center', 'black', [], [])
    stop ()
endfor

dev_close_window_dict (WindowDict)

如果已有模型 *.hdl,可以直接测试

* 读取模型
read_dl_model ('E:/整条/model_final.hdl', DLModelHandle)
* 设置阈值(模型训练后得到)
InferenceClassificationThreshold := 0.183618
InferenceSegmentationThreshold := 0.236205
* 用模型中已设定的尺寸缩放
get_dl_model_param (DLModelHandle, 'image_width', ImageWidth)
get_dl_model_param (DLModelHandle, 'image_height', ImageHeight)
create_dl_preprocess_param ('anomaly_detection', ImageWidth, ImageHeight, 3, [], [], 'constant_values', 'full_domain', [], [], [], [], DLPreprocessParam)
* 创建类别标签字典(不起作用,但是必须有)
create_dict (DLDatasetInfo)
set_dict_tuple (DLDatasetInfo, 'class_names', ['ok','ng'])
set_dict_tuple (DLDatasetInfo, 'class_ids', ['0','1'])
* 创建字典,承载窗体信息
create_dict (WindowDict)
* 读图
list_files ('E:/整条/ng', ['files','follow_links','recursive'], ImageFiles)
tuple_regexp_select (ImageFiles, ['\\.(tif|tiff|gif|bmp|jpg|jpeg|jp2|png|pcx|pgm|ppm|pbm|xwd|ima|hobj)$','ignore_case'], ImageFiles)
for Index := 0 to |ImageFiles| - 1 by 1
    read_image (Image, ImageFiles[Index])
    * Image Acquisition 01: Do something
    gen_dl_samples_from_images (Image, DLSample)
    preprocess_dl_samples(DLSample, DLPreprocessParam)
    preprocess_dl_samples_bottle (DLSample)
    apply_dl_model (DLModelHandle, DLSample, [], DLResult)
    threshold_dl_anomaly_results (InferenceSegmentationThreshold, InferenceClassificationThreshold, DLResult)
    * 展示结果
    dev_display_dl_data (DLSample, DLResult, DLDatasetInfo, ['anomaly_result','anomaly_image'], [], WindowDict)
    dev_disp_text ('Press F5 (continue)', 'window', 'bottom', 'center', 'black', [], [])
    stop ()  
    
endfor
dev_close_window_dict (WindowDict)

 

posted @ 2020-06-18 12:04  夕西行  阅读(6435)  评论(8编辑  收藏  举报