具体封装函数讲解read_num_class_data()、prepare_train_data()等(OpenCV案例源码letter_recog.cpp解读2)

letter_recog.cpp的整体认识查阅RTrees、Boost、ANN_MLP、KNearest、NormalBayesClassifier、SVM,大写英文字母识别,三目运算符的妙用(OpenCV案例源码letter_recog.cpp解读)

letter-recognition.data,20000*17,前16000行用于训练,后4000行测试。

 

1、read_num_class_data()函数,把数据的第一列保存到标签集_responses,之后的16列保存到特征集_data。

用到了两个函数,说明如下:

fgets(str,n,fp);

从fp指向的文件中获取n-1个字符,并在最后加一个'\0'字符,共n个字符,放到字符数组str中。
如果在读完n-1个字符之前就遇到了换行符或eof,读入结束。
fgets函数返回值为str的首地址。

float a;
int b;
sscanf(ptr, "%f%n", &a, ,&b);//ptr指向的内容中获取浮点型格式的数据保存到a中(%f的作用),此%n所在位置(在当前浮点型之后1位)之前的字符个数保存到b中(%n的作用)

// 把既有标签又有特征的集合,拆分为标签集_responses、特征集_data,var_count是特征数(_data的列数)
static bool read_num_class_data(const string& filename, int var_count,Mat* _data, Mat* _responses)
{
    const int M = 1024;//每行最多读取1024个字符,超过filename中每行字符数即可
    char buf[M + 2];//buf的第一个元素用于存放标签,+2防止溢出

    Mat el_ptr(1, var_count, CV_32F);//用于存放特征集
    vector<int> responses;//用于存放标签,push_back buf的第一个元素

    _data->release(); //释放该指向中所存储的内容,不是销毁
    _responses->release();

    FILE* f = fopen(filename.c_str(), "rt");//r只读,t文本文件(可省略,默认t)
    if (!f)
    {
        cout << "Could not read the database " << filename << endl;
        return false;
    }

    for (;;)
    {
        char* ptr;
        if (!fgets(buf, M, f) )//此处每次读一行,因为每行不够1024个字符,遇到换行符停止读取。
            break;//直到最后一行
        responses.push_back((int)buf[0]);//每行第1个元素放入responses中(标签)
        ptr = buf + 2;//ptr指向第一个逗号之后的数据,即第一个样本的第一个特征值
        for (int i = 0; i < var_count; i++)//遍历一行中的每个元素
        {
            int n = 0;
            sscanf(ptr, "%f%n", &el_ptr.at<float>(i), &n);//把一行中的浮点数存放到el_ptr一维行向量中
            ptr += n + 1;//跳过逗号
        }
        _data->push_back(el_ptr);//存到特征集_data,_data指向一片Mat空间
    }
    fclose(f);
    Mat(responses).copyTo(*_responses);//保存到_responses指向的Mat空间

    cout << "The database " << filename << " is loaded.\n";

    return true;
}

2、prepare_train_data()函数,从特征集data中选取前80%行,所有列作为训练集。下文中有int ntrain_samples = (int)(nsamples_all*0.8);

//特征集data中选取前80%行,所有列作为训练集。下文中有int ntrain_samples = (int)(nsamples_all*0.8);
static Ptr<TrainData> prepare_train_data(const Mat& data, const Mat& responses, int ntrain_samples)
{
    Mat sample_idx = Mat::zeros(1, data.rows, CV_8U);
    Mat train_samples = sample_idx.colRange(0, ntrain_samples);//80%的样本
    train_samples.setTo(Scalar::all(1));//操作train_samples就是操作sample_idx,浅拷贝。sample_idx中前80%变为1

    return TrainData::create(data, ROW_SAMPLE, responses,noArray(), sample_idx);//所有特征(列)参与训练,前80%样本(行)参与训练
}

3、训练终止条件

inline TermCriteria TC(int iters, double eps)
{
    return TermCriteria(TermCriteria::MAX_ITER + (eps > 0 ? TermCriteria::EPS : 0), iters, eps);
}

4、test_and_save_classifier()函数,测试并保存分类模型,算出训练、测试的准确率

static void test_and_save_classifier(const Ptr<StatModel>& model,const Mat& data, const Mat& responses,int ntrain_samples, int rdelta,const string& filename_to_save)
{
    int i, nsamples_all = data.rows;
    double train_hr = 0, test_hr = 0;

    for (i = 0; i < nsamples_all; i++)
    {
        Mat sample = data.row(i);

        float r = model->predict(sample);//所有样本,逐行预测,返回预测结果,65~90
        //除MLP,其他算法rdelta=0,预测结果r-对应标签responses如果为0则预测正确,下方的统计数+1
        r = std::abs(r + rdelta - responses.at<int>(i)) <= FLT_EPSILON ? 1.f : 0.f;//FLT_EPSILON非常小的正数

        if (i < ntrain_samples)//ntrain_samples是0.8*总样本,即80%用于训练
            train_hr += r;//统计训练正确的个数
        else
            test_hr += r;//统计测试正确的个数
    }
    //计算准确率
    test_hr /= nsamples_all - ntrain_samples;
    train_hr = ntrain_samples > 0 ? train_hr / ntrain_samples : 1.;//保证分母不为0

    printf("Recognition rate: train = %.1f%%, test = %.1f%%\n",    train_hr*100., test_hr*100.);
    
    //保存模型,xml格式
    if (!filename_to_save.empty())
    {
        model->save(filename_to_save);
    }
}

5、load_classifier()函数,模板类,提示信息,xml模型文件载入是否成功

template<typename T>
static Ptr<T> load_classifier(const string& filename_to_load)
{
    // load classifier from the specified file
    Ptr<T> model = StatModel::load<T>(filename_to_load);
    if (model.empty())
        cout << "Could not read the classifier " << filename_to_load << endl;
    else
        cout << "The classifier " << filename_to_load << " is loaded.\n";

    return model;
}

 6、具体的各个训练模型的使用这里不再赘述,上述函数是为了统一方便使用而创建的,我会在其他博客里单独使用模型,精简清晰明确,而不需要这么多代码。

全部代码,有删减。

#include<opencv2\opencv.hpp>
#include <iostream>

using namespace std;
using namespace cv;
using namespace cv::ml;

// 把既有标签又有特征的集合,拆分为标签集_responses、特征集_data,var_count是特征数(_data的列数)
static bool read_num_class_data(const string& filename, int var_count, Mat* _data, Mat* _responses)
{
    const int M = 1024;//每行最多读取1024个字符,超过filename中每行字符数即可
    char buf[M + 2];//buf的第一个元素用于存放标签,+2防止溢出

    Mat el_ptr(1, var_count, CV_32F);//用于存放特征集
    vector<int> responses;//用于存放标签,push_back buf的第一个元素

    _data->release(); //释放该指向中所存储的内容,不是销毁
    _responses->release();

    FILE* f = fopen(filename.c_str(), "rt");//r只读,t文本文件(可省略,默认t)
    if (!f)
    {
        cout << "Could not read the database " << filename << endl;
        return false;
    }

    for (;;)
    {
        char* ptr;
        if (!fgets(buf, M, f))//此处每次读一行,因为每行不够1024个字符,遇到换行符停止读取。
            break;//直到最后一行
        responses.push_back((int)buf[0]);//每行第1个元素放入responses中(标签)
        ptr = buf + 2;//ptr指向第一个逗号之后的数据,即第一个样本的第一个特征值
        for (int i = 0; i < var_count; i++)//遍历一行中的每个元素
        {
            int n = 0;
            sscanf(ptr, "%f%n", &el_ptr.at<float>(i), &n);//把一行中的浮点数存放到el_ptr一维行向量中
            ptr += n + 1;//跳过逗号
        }
        _data->push_back(el_ptr);//存到特征集_data,_data指向一片Mat空间
    }
    fclose(f);
    Mat(responses).copyTo(*_responses);//保存到_responses指向的Mat空间

    cout << "The database " << filename << " is loaded.\n";

    return true;
}

//特征集data中选取前80%行,所有列作为训练集。下文中有int ntrain_samples = (int)(nsamples_all*0.8);
static Ptr<TrainData> prepare_train_data(const Mat& data, const Mat& responses, int ntrain_samples)
{
    Mat sample_idx = Mat::zeros(1, data.rows, CV_8U);
    Mat train_samples = sample_idx.colRange(0, ntrain_samples);//80%的样本
    train_samples.setTo(Scalar::all(1));//操作train_samples就是操作sample_idx,浅拷贝。sample_idx中前80%变为1

    return TrainData::create(data, ROW_SAMPLE, responses, noArray(), sample_idx);//所有特征(列)参与训练,前80%样本(行)参与训练
}

inline TermCriteria TC(int iters, double eps)
{
    return TermCriteria(TermCriteria::MAX_ITER + (eps > 0 ? TermCriteria::EPS : 0), iters, eps);
}
//测试并保存分类模型,算出训练、测试的准确率
static void test_and_save_classifier(const Ptr<StatModel>& model, const Mat& data, const Mat& responses, int ntrain_samples, int rdelta, const string& filename_to_save)
{
    int i, nsamples_all = data.rows;
    double train_hr = 0, test_hr = 0;

    for (i = 0; i < nsamples_all; i++)
    {
        Mat sample = data.row(i);

        float r = model->predict(sample);//所有样本,逐行预测,返回预测结果,65~90
        //除MLP,其他算法rdelta=0,预测结果r-对应标签responses如果为0则预测正确,下方的统计数+1
        r = std::abs(r + rdelta - responses.at<int>(i)) <= FLT_EPSILON ? 1.f : 0.f;//FLT_EPSILON非常小的正数

        if (i < ntrain_samples)//ntrain_samples是0.8*总样本,即80%用于训练
            train_hr += r;//统计训练正确的个数
        else
            test_hr += r;//统计测试正确的个数
    }
    //计算准确率
    test_hr /= nsamples_all - ntrain_samples;
    train_hr = ntrain_samples > 0 ? train_hr / ntrain_samples : 1.;//保证分母不为0

    printf("Recognition rate: train = %.1f%%, test = %.1f%%\n", train_hr*100., test_hr*100.);

    //保存模型,xml格式
    if (!filename_to_save.empty())
    {
        model->save(filename_to_save);
    }
}

//模板类,提示信息,xml模型文件载入是否成功
template<typename T>
static Ptr<T> load_classifier(const string& filename_to_load)
{
    // load classifier from the specified file
    Ptr<T> model = StatModel::load<T>(filename_to_load);
    if (model.empty())
        cout << "Could not read the classifier " << filename_to_load << endl;
    else
        cout << "The classifier " << filename_to_load << " is loaded.\n";

    return model;
}
//************************************以下为具体的模型***************************************************************//
static bool build_rtrees_classifier(const string& data_filename, const string& filename_to_save, const string& filename_to_load)
{
    Mat data;
    Mat responses;
    bool ok = read_num_class_data(data_filename, 16, &data, &responses);//拆分总集为特征集(16个特征)、标签集
    if (!ok)
        return ok;

    Ptr<RTrees> model;

    int nsamples_all = data.rows;
    int ntrain_samples = (int)(nsamples_all*0.8);

    // Create or load Random Trees classifier
    if (!filename_to_load.empty())
    {
        model = load_classifier<RTrees>(filename_to_load);
        if (model.empty())
            return false;
        ntrain_samples = 0;
    }
    else
    {
        // create classifier by using <data> and <responses>
        cout << "Training the classifier ...\n";
        //        Params( int maxDepth, int minSampleCount,
        //                   double regressionAccuracy, bool useSurrogates,
        //                   int maxCategories, const Mat& priors,
        //                   bool calcVarImportance, int nactiveVars,
        //                   TermCriteria termCrit );
        Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples);

        model = RTrees::create();
        model->setMaxDepth(10);
        model->setMinSampleCount(10);
        model->setRegressionAccuracy(0);
        model->setUseSurrogates(false);
        model->setMaxCategories(15);
        model->setPriors(Mat());
        model->setCalculateVarImportance(true);
        model->setActiveVarCount(4);
        model->setTermCriteria(TC(100, 0.01f));
        model->train(tdata);

        cout << endl;
    }

    test_and_save_classifier(model, data, responses, ntrain_samples, 0, filename_to_save);
    cout << "Number of trees: " << model->getRoots().size() << endl;//树的个数

    //输出每个特征的重要性,越大表明此特征越重要
    Mat var_importance = model->getVarImportance();
    cout << var_importance << endl;

    return true;
}


static bool build_boost_classifier(const string& data_filename,    const string& filename_to_save,    const string& filename_to_load)
{
    const int class_count = 26;
    Mat data;
    Mat responses;
    Mat weak_responses;

    bool ok = read_num_class_data(data_filename, 16, &data, &responses);
    if (!ok)
        return ok;

    int i, j, k;
    Ptr<Boost> model;

    int nsamples_all = data.rows;
    int ntrain_samples = (int)(nsamples_all*0.5);
    int var_count = data.cols;

    // Create or load Boosted Tree classifier
    if (!filename_to_load.empty())
    {
        model = load_classifier<Boost>(filename_to_load);
        if (model.empty())
            return false;
        ntrain_samples = 0;
    }
    else
    {
        // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
        //
        // As currently boosted tree classifier in MLL can only be trained
        // for 2-class problems, we transform the training database by
        // "unrolling" each training sample as many times as the number of
        // classes (26) that we have.
        //
        // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

        Mat new_data(ntrain_samples*class_count, var_count + 1, CV_32F);
        Mat new_responses(ntrain_samples*class_count, 1, CV_32S);

        // 1. unroll the database type mask
        printf("Unrolling the database...\n");
        for (i = 0; i < ntrain_samples; i++)
        {
            const float* data_row = data.ptr<float>(i);
            for (j = 0; j < class_count; j++)
            {
                float* new_data_row = (float*)new_data.ptr<float>(i*class_count + j);
                memcpy(new_data_row, data_row, var_count*sizeof(data_row[0]));
                new_data_row[var_count] = (float)j;
                new_responses.at<int>(i*class_count + j) = responses.at<int>(i) == j + 'A';
            }
        }

        Mat var_type(1, var_count + 2, CV_8U);
        var_type.setTo(Scalar::all(VAR_ORDERED));
        var_type.at<uchar>(var_count) = var_type.at<uchar>(var_count + 1) = VAR_CATEGORICAL;

        Ptr<TrainData> tdata = TrainData::create(new_data, ROW_SAMPLE, new_responses,
            noArray(), noArray(), noArray(), var_type);
        vector<double> priors(2);
        priors[0] = 1;
        priors[1] = 26;

        cout << "Training the classifier (may take a few minutes)...\n";
        model = Boost::create();
        model->setBoostType(Boost::GENTLE);
        model->setWeakCount(100);
        model->setWeightTrimRate(0.95);
        model->setMaxDepth(5);
        model->setUseSurrogates(false);
        model->setPriors(Mat(priors));
        model->train(tdata);
        cout << endl;
    }

    Mat temp_sample(1, var_count + 1, CV_32F);
    float* tptr = temp_sample.ptr<float>();

    // compute prediction error on train and test data
    double train_hr = 0, test_hr = 0;
    for (i = 0; i < nsamples_all; i++)
    {
        int best_class = 0;
        double max_sum = -DBL_MAX;
        const float* ptr = data.ptr<float>(i);
        for (k = 0; k < var_count; k++)
            tptr[k] = ptr[k];

        for (j = 0; j < class_count; j++)
        {
            tptr[var_count] = (float)j;
            float s = model->predict(temp_sample, noArray(), StatModel::RAW_OUTPUT);
            if (max_sum < s)
            {
                max_sum = s;
                best_class = j + 'A';
            }
        }

        double r = std::abs(best_class - responses.at<int>(i)) < FLT_EPSILON ? 1 : 0;
        if (i < ntrain_samples)
            train_hr += r;
        else
            test_hr += r;
    }

    test_hr /= nsamples_all - ntrain_samples;
    train_hr = ntrain_samples > 0 ? train_hr / ntrain_samples : 1.;
    printf("Recognition rate: train = %.1f%%, test = %.1f%%\n", train_hr*100., test_hr*100.);

    cout << "Number of trees: " << model->getRoots().size() << endl;

    // Save classifier to file if needed
    if (!filename_to_save.empty())
        model->save(filename_to_save);

    return true;
}


static bool build_mlp_classifier(const string& data_filename, const string& filename_to_save, const string& filename_to_load)
{
    const int class_count = 26;
    Mat data;
    Mat responses;

    bool ok = read_num_class_data(data_filename, 16, &data, &responses);
    if (!ok)
        return ok;

    Ptr<ANN_MLP> model;

    int nsamples_all = data.rows;
    //int ntrain_samples = (int)(nsamples_all*0.8);
    int ntrain_samples = (int)(nsamples_all*0.01);

    // Create or load MLP classifier
    if (!filename_to_load.empty())
    {
        model = load_classifier<ANN_MLP>(filename_to_load);
        if (model.empty())
            return false;
        ntrain_samples = 0;
    }
    else
    {
        // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
        //
        // MLP does not support categorical variables by explicitly.
        // So, instead of the output class label, we will use
        // a binary vector of <class_count> components for training and,
        // therefore, MLP will give us a vector of "probabilities" at the
        // prediction stage
        //
        // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

        Mat train_data = data.rowRange(0, ntrain_samples);
        Mat train_responses = Mat::zeros(ntrain_samples, class_count, CV_32F);

        // 1. unroll the responses
        cout << "Unrolling the responses...\n";
        for (int i = 0; i < ntrain_samples; i++)
        {
            int cls_label = responses.at<int>(i) -'A';//大写英文字母用0~25标识
            train_responses.at<float>(i, cls_label) = 1.f;
        }

        // 2. train classifier
        int layer_sz[] = { data.cols, 100, 100, class_count };
        int nlayers = (int)(sizeof(layer_sz) / sizeof(layer_sz[0]));
        Mat layer_sizes(1, nlayers, CV_32S, layer_sz);

#if 1
        int method = ANN_MLP::BACKPROP;
        double method_param = 0.001;
        int max_iter = 300;
#else
        int method = ANN_MLP::RPROP;
        double method_param = 0.1;
        int max_iter = 1000;
#endif

        Ptr<TrainData> tdata = TrainData::create(train_data, ROW_SAMPLE, train_responses);

        cout << "Training the classifier (may take a few minutes)...\n";
        model = ANN_MLP::create();
        model->setLayerSizes(layer_sizes);
        model->setActivationFunction(ANN_MLP::SIGMOID_SYM, 0, 0);
        model->setTermCriteria(TC(max_iter, 0));
        model->setTrainMethod(method, method_param);
        model->train(tdata);
        cout << endl;
    }

    //test_and_save_classifier(model, data, responses, ntrain_samples, 'A', filename_to_save);
    test_and_save_classifier(model, data, responses, ntrain_samples, 'A', "save.xml");
    return true;
}

static bool build_knearest_classifier(const string& data_filename, int K)
{
    Mat data;
    Mat responses;
    bool ok = read_num_class_data(data_filename, 16, &data, &responses);
    if (!ok)
        return ok;

    int nsamples_all = data.rows;
    int ntrain_samples = (int)(nsamples_all*0.8);

    // create classifier by using <data> and <responses>
    cout << "Training the classifier ...\n";
    Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples);
    Ptr<KNearest> model = KNearest::create();
    model->setDefaultK(K);
    model->setIsClassifier(true);
    model->train(tdata);
    cout << endl;

    test_and_save_classifier(model, data, responses, ntrain_samples, 0, string());
    return true;
}

static bool build_nbayes_classifier(const string& data_filename)
{
    Mat data;
    Mat responses;
    bool ok = read_num_class_data(data_filename, 16, &data, &responses);
    if (!ok)
        return ok;

    Ptr<NormalBayesClassifier> model;
    int nsamples_all = data.rows;
    int ntrain_samples = (int)(nsamples_all*0.8);

    // create classifier by using <data> and <responses>
    cout << "Training the classifier ...\n";
    Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples);
    model = NormalBayesClassifier::create();
    model->train(tdata);
    cout << endl;

    test_and_save_classifier(model, data, responses, ntrain_samples, 0, string());
    return true;
}

static bool build_svm_classifier(const string& data_filename, const string& filename_to_save, const string& filename_to_load)
{
    Mat data;
    Mat responses;
    bool ok = read_num_class_data(data_filename, 16, &data, &responses);
    if (!ok)
        return ok;

    Ptr<SVM> model;

    int nsamples_all = data.rows;
    int ntrain_samples = (int)(nsamples_all*0.8);

    // Create or load Random Trees classifier
    if (!filename_to_load.empty())
    {
        model = load_classifier<SVM>(filename_to_load);
        if (model.empty())
            return false;
        ntrain_samples = 0;
    }
    else
    {
        // create classifier by using <data> and <responses>
        cout << "Training the classifier ...\n";
        Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples);
        model = SVM::create();
        model->setType(SVM::C_SVC);
        model->setKernel(SVM::LINEAR);
        model->setC(1);
        model->train(tdata);
        cout << endl;
    }

    test_and_save_classifier(model, data, responses, ntrain_samples, 0, filename_to_save);
    return true;
}

int main(int argc, char *argv[])
{
    string filename_to_save = "";
    string filename_to_load = "";
    string data_filename;
    string method = "rtrees";

    data_filename = "letter-recognition.data";//数据集
    filename_to_save = "model.xml";//保存模型
    //filename_to_load = "model.xml";//载入已有模型

    //三目运算符,替代if……else if嵌套
    if ((method == "rtrees" ? build_rtrees_classifier(data_filename, filename_to_save, filename_to_load) :
        method == "boost" ? build_boost_classifier(data_filename, filename_to_save, filename_to_load) :
        method == "mlp" ? build_mlp_classifier(data_filename, filename_to_save, filename_to_load) :
        method == "knearest" ? build_knearest_classifier(data_filename, 10) :
        method == "nbayes" ? build_nbayes_classifier(data_filename) :
        method == "svm" ? build_svm_classifier(data_filename, filename_to_save, filename_to_load) :
        -1) < 0)

        return 0;
}

 

posted @ 2020-03-18 09:46  夕西行  阅读(857)  评论(0编辑  收藏  举报