MSER特征点

MSER(Maximally Stable Extremal Regions)最大稳定极值区域,2002提出,基于分水岭的思想来做图像中斑点的检测。

使用一系列灰度阈值对图像进行二值化处理,得到相应的黑色区域与白色区域。在比较宽的灰度阈值范围内保持形状稳定的区域称为稳定区域。

【函数】

Ptr<MSER> create( int _delta=5, int _min_area=60, int _max_area=14400, double _max_variation=0.25, double _min_diversity=.2, int _max_evolution=200, double _area_threshold=1.01, double _min_margin=0.003, int _edge_blur_size=5 );

【参数】原理链接

_delta——两个区域间的灰度差

_min_area——剔除小于此值的区域

_max_area——剔除大于此值的区域

_max_variation——剔除灰度值变化时,区域变化为此倍数的区域

_min_diversity——当前区域与稳定区域的变化率

_max_evolution——进化步长

_area_threshold——重新初始化的面积阈值

_min_margin——最小边缘尺寸

_edge_blur_size——边缘滤波的孔径尺寸

【案例】

复制代码
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace std;
using namespace cv;

int main()
{
    Mat srcImage = imread("D:/sunflower.png");
        Mat srcGrayImage;
        if (srcImage.channels() == 3)
        {
            cvtColor(srcImage,srcGrayImage,CV_RGB2GRAY);
        }
        else
        {
            srcImage.copyTo(srcGrayImage);
        }
        vector<KeyPoint>detectKeyPoint;
        Mat keyPointImage1,keyPointImage2;

        Ptr<MSER> mser = MSER::create();
        mser->detect(srcGrayImage,detectKeyPoint);
        drawKeypoints(srcImage,detectKeyPoint,keyPointImage1,Scalar(0,0,255),DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
        drawKeypoints(srcImage,detectKeyPoint,keyPointImage2,Scalar(0,0,255),DrawMatchesFlags::DEFAULT);

        imshow("src image",srcImage);
        imshow("keyPoint image1",keyPointImage1);
        imshow("keyPoint image2",keyPointImage2);

        waitKey(0);
        return 0;
}
复制代码

 

posted @   夕西行  阅读(990)  评论(0编辑  收藏  举报
编辑推荐:
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?
历史上的今天:
2019-03-12 读图,特征提取——形状
点击右上角即可分享
微信分享提示