shi_tomasi特征点,GFTTDetector

哈里斯(Harris)角点会出现聚簇现象(cornerHarris函数),为避免此现象,提出shi_tomasi角点检测算法goodFeatureToTrack,GFTTDetector实现了此算法。

【函数】

Ptr<GFTTDetector> create( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1,int blockSize=3, bool useHarrisDetector=false, double k=0.04 );

Ptr<GFTTDetector> create( int maxCorners, double qualityLevel, double minDistance,int blockSize, int gradiantSize, bool useHarrisDetector=false, double k=0.04 );

【参数说明】

maxCorners——最大角点数目 

qualityLevel——角点可以接受的最小特征值,一般0.1或者0.01,不超过1 

minDistance——角点之间的最小距离

blockSize——倒数自相关矩阵的邻域范围 

useHarrisDetector——是否使用角点检测 

khessian——自相关矩阵的相对权重系数,一般为0.04

【案例】

复制代码
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace std;
using namespace cv;

int main()
{
    Mat srcImage = imread("D:/sunflower.png");
        Mat srcGrayImage;
        if (srcImage.channels() == 3)
        {
            cvtColor(srcImage,srcGrayImage,CV_RGB2GRAY);
        }
        else
        {
            srcImage.copyTo(srcGrayImage);
        }
        vector<KeyPoint>detectKeyPoint;
        Mat keyPointImage1,keyPointImage2;

        Ptr<GFTTDetector> gftt = GFTTDetector::create();
        gftt->detect(srcGrayImage,detectKeyPoint);
        drawKeypoints(srcImage,detectKeyPoint,keyPointImage1,Scalar(0,0,255),DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
        drawKeypoints(srcImage,detectKeyPoint,keyPointImage2,Scalar(0,0,255),DrawMatchesFlags::DEFAULT);

        imshow("src image",srcImage);
        imshow("keyPoint image1",keyPointImage1);
        imshow("keyPoint image2",keyPointImage2);

        waitKey(0);
        return 0;
}
复制代码

 

posted @   夕西行  阅读(520)  评论(0编辑  收藏  举报
编辑推荐:
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?
历史上的今天:
2019-03-12 读图,特征提取——形状
点击右上角即可分享
微信分享提示