Fork me on GitHub

图卷积网络(GCN)python实现

数据集为cora数据集,cora数据集由机器学习论文组成,共以下7类:

  • 基于案例
  • 遗传算法
  • 神经网络
  • 概率方法
  • 强化学习
  • 规则学习
  • 理论

由cora.content和cora.cities文件构成。共2708个样本,每个样本的特征维度是1433。

下载地址:https://linqs.soe.ucsc.edu/data

cora.content:

每一行由论文id+特征向量+标签构成。

31336    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    Neural_Networks
1061127    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    1    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    Rule_Learning
1106406    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    Reinforcement_Learning
13195    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    Reinforcement_Learning
......

cora.cities:

引用关系:被引论文编号以及引论文编号

35    1033
35    103482
35    103515
35    1050679
35    1103960
35    1103985
35    1109199
35    1112911
......

读取数据集:

import numpy as np
import scipy.sparse as sp
import torch
from sklearn.preprocessing import LabelBinarizer

def normalize_adj(adjacency):
  adjacency += sp.eye(adjacency.shape[0])
  degree = np.array(adjacency.sum(1))
  d_hat = sp.diags(np.power(degree, -0.5).flatten())
  return d_hat.dot(adjacency).dot(d_hat).tocoo()

def normalize_features(features):
  return features / features.sum(1)

def load_data(path="/content/drive/My Drive/nlpdata/cora/", dataset="cora"):
    """Load citation network dataset (cora only for now)"""
    print('Loading {} dataset...'.format(dataset))

    idx_features_labels = np.genfromtxt("{}{}.content".format(path,dataset), dtype=np.dtype(str))
    features = sp.csr_matrix(idx_features_labels[:, 1:-1], dtype=np.float32)
    encode_onehot = LabelBinarizer()
    labels = encode_onehot.fit_transform(idx_features_labels[:, -1])

    # build graph
    idx = np.array(idx_features_labels[:, 0], dtype=np.int32)
    idx_map = {j: i for i, j in enumerate(idx)}
    edges_unordered = np.genfromtxt("{}{}.cites".format(path, dataset), dtype=np.int32)
    edges = np.array(list(map(idx_map.get, edges_unordered.flatten())), dtype=np.int32).reshape(edges_unordered.shape)
    adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])), shape=(labels.shape[0], labels.shape[0]), dtype=np.float32)


    features = normalize_features(features)
    adj = normalize_adj(adj)

    idx_train = range(140)
    idx_val = range(200, 500)
    idx_test = range(500, 1500)

    features = torch.FloatTensor(np.array(features))
    labels = torch.LongTensor(np.where(labels)[1])

    num_nodes = features.shape[0]
    train_mask = np.zeros(num_nodes, dtype=np.bool)
    val_mask = np.zeros(num_nodes, dtype=np.bool)
    test_mask = np.zeros(num_nodes, dtype=np.bool)

    train_mask[idx_train] = True
    val_mask[idx_val] = True
    test_mask[idx_test] = True

    return adj, features, labels, train_mask, val_mask, test_mask

构建网络:

import numpy as np
import scipy.sparse as sp
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import torch.optim as optim
import matplotlib.pyplot as plt
from load_cora import *
import sys
sys.path.append("/content/drive/My Drive/nlpdata/cora/")


class GraphConvolution(nn.Module):
    def __init__(self, input_dim, output_dim, use_bias=True):
        """图卷积:L*X*\theta
        Args:
        ----------
            input_dim: int
                节点输入特征的维度
            output_dim: int
                输出特征维度
            use_bias : bool, optional
                是否使用偏置
        """
        super(GraphConvolution, self).__init__()
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.use_bias = use_bias
        self.weight = nn.Parameter(torch.Tensor(input_dim, output_dim))
        if self.use_bias:
            self.bias = nn.Parameter(torch.Tensor(output_dim))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    def reset_parameters(self):
        init.kaiming_uniform_(self.weight)
        if self.use_bias:
            init.zeros_(self.bias)

    def forward(self, adjacency, input_feature):
        """邻接矩阵是稀疏矩阵,因此在计算时使用稀疏矩阵乘法
    
        Args: 
        -------
            adjacency: torch.sparse.FloatTensor
                邻接矩阵
            input_feature: torch.Tensor
                输入特征
        """
        device = "cuda" if torch.cuda.is_available() else "cpu"
        support = torch.mm(input_feature, self.weight.to(device))
        output = torch.sparse.mm(adjacency, support)
        if self.use_bias:
            output += self.bias.to(device)
        return output

    def __repr__(self):
        return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')'

# ## 模型定义
class GcnNet(nn.Module):
    """
    定义一个包含两层GraphConvolution的模型
    """
    def __init__(self, input_dim=1433):
        super(GcnNet, self).__init__()
        self.gcn1 = GraphConvolution(input_dim, 16)
        self.gcn2 = GraphConvolution(16, 7)
    
    def forward(self, adjacency, feature):
        h = F.relu(self.gcn1(adjacency, feature))
        logits = self.gcn2(adjacency, h)
        return logits

进行训练和测试:

# ## 模型训练

# 超参数定义
learning_rate = 0.1
weight_decay = 5e-4
epochs = 200

# 模型定义:Model, Loss, Optimizer
device = "cuda" if torch.cuda.is_available() else "cpu"
model = GcnNet().to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)

adjacency, features, labels, train_mask, val_mask, test_mask= load_data()
tensor_x = features.to(device)
tensor_y = labels.to(device)
tensor_train_mask = torch.from_numpy(train_mask).to(device)
tensor_val_mask = torch.from_numpy(val_mask).to(device)
tensor_test_mask = torch.from_numpy(test_mask).to(device)
indices = torch.from_numpy(np.asarray([adjacency.row, adjacency.col]).astype('int64')).long()
values = torch.from_numpy(adjacency.data.astype(np.float32))
tensor_adjacency = torch.sparse.FloatTensor(indices, values, (2708, 2708)).to(device)

# 训练主体函数
def train():
    loss_history = []
    val_acc_history = []
    model.train()
    train_y = tensor_y[tensor_train_mask]
    for epoch in range(epochs):
        logits = model(tensor_adjacency, tensor_x)  # 前向传播
        train_mask_logits = logits[tensor_train_mask]   # 只选择训练节点进行监督
        loss = criterion(train_mask_logits, train_y)    # 计算损失值
        optimizer.zero_grad()
        loss.backward()     # 反向传播计算参数的梯度
        optimizer.step()    # 使用优化方法进行梯度更新
        train_acc, _, _ = test(tensor_train_mask)     # 计算当前模型训练集上的准确率
        val_acc, _, _ = test(tensor_val_mask)     # 计算当前模型在验证集上的准确率
        # 记录训练过程中损失值和准确率的变化,用于画图
        loss_history.append(loss.item())
        val_acc_history.append(val_acc.item())
        print("Epoch {:03d}: Loss {:.4f}, TrainAcc {:.4}, ValAcc {:.4f}".format(
            epoch, loss.item(), train_acc.item(), val_acc.item()))
    
    return loss_history, val_acc_history

# 测试函数
def test(mask):
    model.eval()
    with torch.no_grad():
        logits = model(tensor_adjacency, tensor_x)
        test_mask_logits = logits[mask]
        predict_y = test_mask_logits.max(1)[1]
        accuarcy = torch.eq(predict_y, tensor_y[mask]).float().mean()
    return accuarcy, test_mask_logits.cpu().numpy(), tensor_y[mask].cpu().numpy()
if __name__ == "__main__":
  train()
  test_accuracy, _, _ = test(tensor_test_mask)
  print("测试准确率是:{:.4f}".format(test_accuracy))

结果:

Loading cora dataset...
Epoch 000: Loss 1.9681, TrainAcc 0.3286, ValAcc 0.3467
Epoch 001: Loss 1.7307, TrainAcc 0.4786, ValAcc 0.4033
Epoch 002: Loss 1.5521, TrainAcc 0.5214, ValAcc 0.4033
Epoch 003: Loss 1.3685, TrainAcc 0.6143, ValAcc 0.5100
Epoch 004: Loss 1.1594, TrainAcc 0.75, ValAcc 0.5767
Epoch 005: Loss 0.9785, TrainAcc 0.7857, ValAcc 0.5900
Epoch 006: Loss 0.8226, TrainAcc 0.8286, ValAcc 0.5867
Epoch 007: Loss 0.6849, TrainAcc 0.8929, ValAcc 0.6200
Epoch 008: Loss 0.5448, TrainAcc 0.9429, ValAcc 0.6433
Epoch 009: Loss 0.4152, TrainAcc 0.9429, ValAcc 0.6667
Epoch 010: Loss 0.3221, TrainAcc 0.9857, ValAcc 0.6767
Epoch 011: Loss 0.2547, TrainAcc 1.0, ValAcc 0.7033
Epoch 012: Loss 0.1979, TrainAcc 1.0, ValAcc 0.7167
Epoch 013: Loss 0.1536, TrainAcc 1.0, ValAcc 0.7000
Epoch 014: Loss 0.1276, TrainAcc 1.0, ValAcc 0.6700
Epoch 015: Loss 0.1122, TrainAcc 1.0, ValAcc 0.6867
Epoch 016: Loss 0.0979, TrainAcc 1.0, ValAcc 0.6800
Epoch 017: Loss 0.0876, TrainAcc 1.0, ValAcc 0.6700
Epoch 018: Loss 0.0821, TrainAcc 1.0, ValAcc 0.6667
Epoch 019: Loss 0.0799, TrainAcc 1.0, ValAcc 0.6800
Epoch 020: Loss 0.0804, TrainAcc 1.0, ValAcc 0.6933
Epoch 021: Loss 0.0852, TrainAcc 1.0, ValAcc 0.6833
Epoch 022: Loss 0.0904, TrainAcc 1.0, ValAcc 0.6700
Epoch 023: Loss 0.0914, TrainAcc 1.0, ValAcc 0.6700
Epoch 024: Loss 0.0926, TrainAcc 1.0, ValAcc 0.6400
Epoch 025: Loss 0.0953, TrainAcc 1.0, ValAcc 0.6300
Epoch 026: Loss 0.0931, TrainAcc 1.0, ValAcc 0.6467
Epoch 027: Loss 0.0880, TrainAcc 1.0, ValAcc 0.6600
Epoch 028: Loss 0.0851, TrainAcc 1.0, ValAcc 0.6567
Epoch 029: Loss 0.0814, TrainAcc 1.0, ValAcc 0.6600
Epoch 030: Loss 0.0756, TrainAcc 1.0, ValAcc 0.6433
Epoch 031: Loss 0.0709, TrainAcc 1.0, ValAcc 0.6567
Epoch 032: Loss 0.0682, TrainAcc 1.0, ValAcc 0.6467
Epoch 033: Loss 0.0656, TrainAcc 1.0, ValAcc 0.6700
Epoch 034: Loss 0.0628, TrainAcc 1.0, ValAcc 0.6633
Epoch 035: Loss 0.0618, TrainAcc 1.0, ValAcc 0.6833
Epoch 036: Loss 0.0617, TrainAcc 1.0, ValAcc 0.6700
Epoch 037: Loss 0.0615, TrainAcc 1.0, ValAcc 0.6667
Epoch 038: Loss 0.0615, TrainAcc 1.0, ValAcc 0.6600
Epoch 039: Loss 0.0616, TrainAcc 1.0, ValAcc 0.6733
Epoch 040: Loss 0.0613, TrainAcc 1.0, ValAcc 0.6800
Epoch 041: Loss 0.0610, TrainAcc 1.0, ValAcc 0.6867
Epoch 042: Loss 0.0603, TrainAcc 1.0, ValAcc 0.6800
Epoch 043: Loss 0.0598, TrainAcc 1.0, ValAcc 0.6667
Epoch 044: Loss 0.0592, TrainAcc 1.0, ValAcc 0.6833
Epoch 045: Loss 0.0584, TrainAcc 1.0, ValAcc 0.6833
Epoch 046: Loss 0.0575, TrainAcc 1.0, ValAcc 0.6967
Epoch 047: Loss 0.0570, TrainAcc 1.0, ValAcc 0.6900
Epoch 048: Loss 0.0565, TrainAcc 1.0, ValAcc 0.6933
Epoch 049: Loss 0.0560, TrainAcc 1.0, ValAcc 0.6867
Epoch 050: Loss 0.0559, TrainAcc 1.0, ValAcc 0.6900
Epoch 051: Loss 0.0557, TrainAcc 1.0, ValAcc 0.6900
Epoch 052: Loss 0.0555, TrainAcc 1.0, ValAcc 0.6967
Epoch 053: Loss 0.0554, TrainAcc 1.0, ValAcc 0.6867
Epoch 054: Loss 0.0552, TrainAcc 1.0, ValAcc 0.6867
Epoch 055: Loss 0.0550, TrainAcc 1.0, ValAcc 0.6933
Epoch 056: Loss 0.0549, TrainAcc 1.0, ValAcc 0.7000
Epoch 057: Loss 0.0548, TrainAcc 1.0, ValAcc 0.7000
Epoch 058: Loss 0.0547, TrainAcc 1.0, ValAcc 0.7067
Epoch 059: Loss 0.0546, TrainAcc 1.0, ValAcc 0.7000
Epoch 060: Loss 0.0545, TrainAcc 1.0, ValAcc 0.6967
Epoch 061: Loss 0.0545, TrainAcc 1.0, ValAcc 0.6967
Epoch 062: Loss 0.0544, TrainAcc 1.0, ValAcc 0.7067
Epoch 063: Loss 0.0544, TrainAcc 1.0, ValAcc 0.7067
Epoch 064: Loss 0.0543, TrainAcc 1.0, ValAcc 0.7033
Epoch 065: Loss 0.0542, TrainAcc 1.0, ValAcc 0.7000
Epoch 066: Loss 0.0542, TrainAcc 1.0, ValAcc 0.7000
Epoch 067: Loss 0.0542, TrainAcc 1.0, ValAcc 0.7033
Epoch 068: Loss 0.0542, TrainAcc 1.0, ValAcc 0.7067
Epoch 069: Loss 0.0542, TrainAcc 1.0, ValAcc 0.7033
Epoch 070: Loss 0.0543, TrainAcc 1.0, ValAcc 0.7033
Epoch 071: Loss 0.0543, TrainAcc 1.0, ValAcc 0.7000
Epoch 072: Loss 0.0543, TrainAcc 1.0, ValAcc 0.7033
Epoch 073: Loss 0.0544, TrainAcc 1.0, ValAcc 0.7067
Epoch 074: Loss 0.0544, TrainAcc 1.0, ValAcc 0.7067
Epoch 075: Loss 0.0545, TrainAcc 1.0, ValAcc 0.7133
Epoch 076: Loss 0.0545, TrainAcc 1.0, ValAcc 0.7100
Epoch 077: Loss 0.0546, TrainAcc 1.0, ValAcc 0.7133
Epoch 078: Loss 0.0546, TrainAcc 1.0, ValAcc 0.7067
Epoch 079: Loss 0.0547, TrainAcc 1.0, ValAcc 0.7133
Epoch 080: Loss 0.0547, TrainAcc 1.0, ValAcc 0.7033
Epoch 081: Loss 0.0548, TrainAcc 1.0, ValAcc 0.7100
Epoch 082: Loss 0.0549, TrainAcc 1.0, ValAcc 0.7067
Epoch 083: Loss 0.0549, TrainAcc 1.0, ValAcc 0.7133
Epoch 084: Loss 0.0549, TrainAcc 1.0, ValAcc 0.7067
Epoch 085: Loss 0.0550, TrainAcc 1.0, ValAcc 0.7100
Epoch 086: Loss 0.0550, TrainAcc 1.0, ValAcc 0.7033
Epoch 087: Loss 0.0551, TrainAcc 1.0, ValAcc 0.7133
Epoch 088: Loss 0.0551, TrainAcc 1.0, ValAcc 0.7067
Epoch 089: Loss 0.0552, TrainAcc 1.0, ValAcc 0.7100
Epoch 090: Loss 0.0553, TrainAcc 1.0, ValAcc 0.6967
Epoch 091: Loss 0.0553, TrainAcc 1.0, ValAcc 0.7067
Epoch 092: Loss 0.0554, TrainAcc 1.0, ValAcc 0.6900
Epoch 093: Loss 0.0556, TrainAcc 1.0, ValAcc 0.7100
Epoch 094: Loss 0.0557, TrainAcc 1.0, ValAcc 0.6833
Epoch 095: Loss 0.0561, TrainAcc 1.0, ValAcc 0.7033
Epoch 096: Loss 0.0558, TrainAcc 1.0, ValAcc 0.6833
Epoch 097: Loss 0.0557, TrainAcc 1.0, ValAcc 0.7100
Epoch 098: Loss 0.0547, TrainAcc 1.0, ValAcc 0.7133
Epoch 099: Loss 0.0546, TrainAcc 1.0, ValAcc 0.6900
Epoch 100: Loss 0.0555, TrainAcc 1.0, ValAcc 0.7033
Epoch 101: Loss 0.0561, TrainAcc 1.0, ValAcc 0.6700
Epoch 102: Loss 0.0579, TrainAcc 1.0, ValAcc 0.6967
Epoch 103: Loss 0.0577, TrainAcc 1.0, ValAcc 0.6633
Epoch 104: Loss 0.0600, TrainAcc 1.0, ValAcc 0.7000
Epoch 105: Loss 0.0550, TrainAcc 1.0, ValAcc 0.6967
Epoch 106: Loss 0.0540, TrainAcc 1.0, ValAcc 0.6767
Epoch 107: Loss 0.0555, TrainAcc 1.0, ValAcc 0.6967
Epoch 108: Loss 0.0528, TrainAcc 1.0, ValAcc 0.7000
Epoch 109: Loss 0.0571, TrainAcc 1.0, ValAcc 0.6700
Epoch 110: Loss 0.0643, TrainAcc 1.0, ValAcc 0.6933
Epoch 111: Loss 0.0583, TrainAcc 1.0, ValAcc 0.6800
Epoch 112: Loss 0.0533, TrainAcc 1.0, ValAcc 0.6700
Epoch 113: Loss 0.0552, TrainAcc 1.0, ValAcc 0.7067
Epoch 114: Loss 0.0534, TrainAcc 1.0, ValAcc 0.6967
Epoch 115: Loss 0.0555, TrainAcc 1.0, ValAcc 0.6833
Epoch 116: Loss 0.0555, TrainAcc 1.0, ValAcc 0.6800
Epoch 117: Loss 0.0559, TrainAcc 1.0, ValAcc 0.6933
Epoch 118: Loss 0.0601, TrainAcc 1.0, ValAcc 0.6700
Epoch 119: Loss 0.0707, TrainAcc 1.0, ValAcc 0.6667
Epoch 120: Loss 0.0670, TrainAcc 1.0, ValAcc 0.6500
Epoch 121: Loss 0.0574, TrainAcc 1.0, ValAcc 0.6467
Epoch 122: Loss 0.0589, TrainAcc 1.0, ValAcc 0.7033
Epoch 123: Loss 0.0493, TrainAcc 1.0, ValAcc 0.6800
Epoch 124: Loss 0.0591, TrainAcc 1.0, ValAcc 0.6900
Epoch 125: Loss 0.0482, TrainAcc 1.0, ValAcc 0.6600
Epoch 126: Loss 0.0562, TrainAcc 1.0, ValAcc 0.6667
Epoch 127: Loss 0.0538, TrainAcc 1.0, ValAcc 0.6900
Epoch 128: Loss 0.0579, TrainAcc 1.0, ValAcc 0.6867
Epoch 129: Loss 0.0557, TrainAcc 1.0, ValAcc 0.6833
Epoch 130: Loss 0.0615, TrainAcc 1.0, ValAcc 0.6733
Epoch 131: Loss 0.0570, TrainAcc 1.0, ValAcc 0.6667
Epoch 132: Loss 0.0612, TrainAcc 1.0, ValAcc 0.6700
Epoch 133: Loss 0.0669, TrainAcc 1.0, ValAcc 0.6967
Epoch 134: Loss 0.0544, TrainAcc 1.0, ValAcc 0.6767
Epoch 135: Loss 0.0605, TrainAcc 1.0, ValAcc 0.6567
Epoch 136: Loss 0.0546, TrainAcc 1.0, ValAcc 0.6567
Epoch 137: Loss 0.0586, TrainAcc 1.0, ValAcc 0.7033
Epoch 138: Loss 0.0501, TrainAcc 1.0, ValAcc 0.6833
Epoch 139: Loss 0.0600, TrainAcc 1.0, ValAcc 0.7067
Epoch 140: Loss 0.0513, TrainAcc 1.0, ValAcc 0.6633
Epoch 141: Loss 0.0587, TrainAcc 1.0, ValAcc 0.6733
Epoch 142: Loss 0.0556, TrainAcc 1.0, ValAcc 0.6833
Epoch 143: Loss 0.0586, TrainAcc 1.0, ValAcc 0.6967
Epoch 144: Loss 0.0565, TrainAcc 1.0, ValAcc 0.6900
Epoch 145: Loss 0.0586, TrainAcc 1.0, ValAcc 0.6833
Epoch 146: Loss 0.0559, TrainAcc 1.0, ValAcc 0.6767
Epoch 147: Loss 0.0589, TrainAcc 1.0, ValAcc 0.6800
Epoch 148: Loss 0.0562, TrainAcc 1.0, ValAcc 0.6900
Epoch 149: Loss 0.0560, TrainAcc 1.0, ValAcc 0.6933
Epoch 150: Loss 0.0565, TrainAcc 1.0, ValAcc 0.6833
Epoch 151: Loss 0.0547, TrainAcc 1.0, ValAcc 0.6767
Epoch 152: Loss 0.0559, TrainAcc 1.0, ValAcc 0.6967
Epoch 153: Loss 0.0549, TrainAcc 1.0, ValAcc 0.6933
Epoch 154: Loss 0.0567, TrainAcc 1.0, ValAcc 0.7000
Epoch 155: Loss 0.0556, TrainAcc 1.0, ValAcc 0.6867
Epoch 156: Loss 0.0568, TrainAcc 1.0, ValAcc 0.6967
Epoch 157: Loss 0.0558, TrainAcc 1.0, ValAcc 0.6967
Epoch 158: Loss 0.0568, TrainAcc 1.0, ValAcc 0.6867
Epoch 159: Loss 0.0560, TrainAcc 1.0, ValAcc 0.6867
Epoch 160: Loss 0.0563, TrainAcc 1.0, ValAcc 0.6933
Epoch 161: Loss 0.0562, TrainAcc 1.0, ValAcc 0.6967
Epoch 162: Loss 0.0559, TrainAcc 1.0, ValAcc 0.6833
Epoch 163: Loss 0.0556, TrainAcc 1.0, ValAcc 0.7000
Epoch 164: Loss 0.0554, TrainAcc 1.0, ValAcc 0.7033
Epoch 165: Loss 0.0556, TrainAcc 1.0, ValAcc 0.6967
Epoch 166: Loss 0.0553, TrainAcc 1.0, ValAcc 0.6900
Epoch 167: Loss 0.0555, TrainAcc 1.0, ValAcc 0.7033
Epoch 168: Loss 0.0554, TrainAcc 1.0, ValAcc 0.6967
Epoch 169: Loss 0.0560, TrainAcc 1.0, ValAcc 0.6833
Epoch 170: Loss 0.0558, TrainAcc 1.0, ValAcc 0.6900
Epoch 171: Loss 0.0561, TrainAcc 1.0, ValAcc 0.7033
Epoch 172: Loss 0.0560, TrainAcc 1.0, ValAcc 0.6967
Epoch 173: Loss 0.0559, TrainAcc 1.0, ValAcc 0.6833
Epoch 174: Loss 0.0557, TrainAcc 1.0, ValAcc 0.6967
Epoch 175: Loss 0.0554, TrainAcc 1.0, ValAcc 0.7033
Epoch 176: Loss 0.0554, TrainAcc 1.0, ValAcc 0.7033
Epoch 177: Loss 0.0551, TrainAcc 1.0, ValAcc 0.6933
Epoch 178: Loss 0.0553, TrainAcc 1.0, ValAcc 0.6967
Epoch 179: Loss 0.0553, TrainAcc 1.0, ValAcc 0.7000
Epoch 180: Loss 0.0555, TrainAcc 1.0, ValAcc 0.6900
Epoch 181: Loss 0.0556, TrainAcc 1.0, ValAcc 0.7000
Epoch 182: Loss 0.0557, TrainAcc 1.0, ValAcc 0.7033
Epoch 183: Loss 0.0558, TrainAcc 1.0, ValAcc 0.6933
Epoch 184: Loss 0.0556, TrainAcc 1.0, ValAcc 0.6867
Epoch 185: Loss 0.0555, TrainAcc 1.0, ValAcc 0.7033
Epoch 186: Loss 0.0554, TrainAcc 1.0, ValAcc 0.7000
Epoch 187: Loss 0.0552, TrainAcc 1.0, ValAcc 0.6933
Epoch 188: Loss 0.0552, TrainAcc 1.0, ValAcc 0.6933
Epoch 189: Loss 0.0553, TrainAcc 1.0, ValAcc 0.7000
Epoch 190: Loss 0.0554, TrainAcc 1.0, ValAcc 0.7000
Epoch 191: Loss 0.0554, TrainAcc 1.0, ValAcc 0.6933
Epoch 192: Loss 0.0555, TrainAcc 1.0, ValAcc 0.7000
Epoch 193: Loss 0.0555, TrainAcc 1.0, ValAcc 0.7000
Epoch 194: Loss 0.0555, TrainAcc 1.0, ValAcc 0.6933
Epoch 195: Loss 0.0554, TrainAcc 1.0, ValAcc 0.6933
Epoch 196: Loss 0.0553, TrainAcc 1.0, ValAcc 0.7000
Epoch 197: Loss 0.0553, TrainAcc 1.0, ValAcc 0.7033
Epoch 198: Loss 0.0553, TrainAcc 1.0, ValAcc 0.6933
Epoch 199: Loss 0.0553, TrainAcc 1.0, ValAcc 0.7033
测试准确率是:0.6480

最后是进行tsne降维可视化:

from sklearn.manifold import TSNE
test_accuracy, test_data, test_labels = test(tensor_test_mask)
tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000) # TSNE降维,降到2
low_dim_embs = tsne.fit_transform(test_data)
plt.title('tsne result')
plt.scatter(low_dim_embs[:,0], low_dim_embs[:,1], marker='o', c=test_labels)
plt.savefig("tsne.png")

 

参考:

https://blog.csdn.net/weixin_39373480/article/details/88742200

【深入浅出图神经网络】

posted @ 2020-08-23 18:14  西西嘛呦  阅读(3752)  评论(7编辑  收藏  举报