【python实现卷积神经网络】激活层实现
代码来源:https://github.com/eriklindernoren/ML-From-Scratch
卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html
激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus):https://www.cnblogs.com/xiximayou/p/12713081.html
损失函数定义(均方误差、交叉熵损失):https://www.cnblogs.com/xiximayou/p/12713198.html
优化器的实现(SGD、Nesterov、Adagrad、Adadelta、RMSprop、Adam):https://www.cnblogs.com/xiximayou/p/12713594.html
卷积层反向传播过程:https://www.cnblogs.com/xiximayou/p/12713930.html
全连接层实现:https://www.cnblogs.com/xiximayou/p/12720017.html
批量归一化层实现:https://www.cnblogs.com/xiximayou/p/12720211.html
池化层实现:https://www.cnblogs.com/xiximayou/p/12720324.html
padding2D实现:https://www.cnblogs.com/xiximayou/p/12720454.html
Flatten层实现:https://www.cnblogs.com/xiximayou/p/12720518.html
上采样层UpSampling2D实现:https://www.cnblogs.com/xiximayou/p/12720558.html
Dropout层实现:https://www.cnblogs.com/xiximayou/p/12720589.html
之前就已经定义过了各种激活函数的前向和反向计算,这里只需要将其封装成类。
activation_functions = { 'relu': ReLU, 'sigmoid': Sigmoid, 'selu': SELU, 'elu': ELU, 'softmax': Softmax, 'leaky_relu': LeakyReLU, 'tanh': TanH, 'softplus': SoftPlus } class Activation(Layer): """A layer that applies an activation operation to the input. Parameters: ----------- name: string The name of the activation function that will be used. """ def __init__(self, name): self.activation_name = name self.activation_func = activation_functions[name]() self.trainable = True def layer_name(self): return "Activation (%s)" % (self.activation_func.__class__.__name__) def forward_pass(self, X, training=True): self.layer_input = X return self.activation_func(X) def backward_pass(self, accum_grad): return accum_grad * self.activation_func.gradient(self.layer_input) def output_shape(self): return self.input_shape