【python实现卷积神经网络】Dropout层实现
代码来源:https://github.com/eriklindernoren/ML-From-Scratch
卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html
激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus):https://www.cnblogs.com/xiximayou/p/12713081.html
损失函数定义(均方误差、交叉熵损失):https://www.cnblogs.com/xiximayou/p/12713198.html
优化器的实现(SGD、Nesterov、Adagrad、Adadelta、RMSprop、Adam):https://www.cnblogs.com/xiximayou/p/12713594.html
卷积层反向传播过程:https://www.cnblogs.com/xiximayou/p/12713930.html
全连接层实现:https://www.cnblogs.com/xiximayou/p/12720017.html
批量归一化层实现:https://www.cnblogs.com/xiximayou/p/12720211.html
池化层实现:https://www.cnblogs.com/xiximayou/p/12720324.html
padding2D实现:https://www.cnblogs.com/xiximayou/p/12720454.html
Flatten层实现:https://www.cnblogs.com/xiximayou/p/12720518.html
上采样层UpSampling2D实现:https://www.cnblogs.com/xiximayou/p/12720558.html
class Dropout(Layer): """A layer that randomly sets a fraction p of the output units of the previous layer to zero. Parameters: ----------- p: float The probability that unit x is set to zero. """ def __init__(self, p=0.2): self.p = p self._mask = None self.input_shape = None self.n_units = None self.pass_through = True self.trainable = True def forward_pass(self, X, training=True): c = (1 - self.p) if training: self._mask = np.random.uniform(size=X.shape) > self.p c = self._mask return X * c def backward_pass(self, accum_grad): return accum_grad * self._mask def output_shape(self): return self.input_shape
核心就是生成一个随机失活神经元的遮罩。