Fork me on GitHub

【python实现卷积神经网络】Dropout层实现

代码来源:https://github.com/eriklindernoren/ML-From-Scratch

卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html

激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus):https://www.cnblogs.com/xiximayou/p/12713081.html

损失函数定义(均方误差、交叉熵损失):https://www.cnblogs.com/xiximayou/p/12713198.html

优化器的实现(SGD、Nesterov、Adagrad、Adadelta、RMSprop、Adam):https://www.cnblogs.com/xiximayou/p/12713594.html

卷积层反向传播过程:https://www.cnblogs.com/xiximayou/p/12713930.html

全连接层实现:https://www.cnblogs.com/xiximayou/p/12720017.html

批量归一化层实现:https://www.cnblogs.com/xiximayou/p/12720211.html

池化层实现:https://www.cnblogs.com/xiximayou/p/12720324.html

padding2D实现:https://www.cnblogs.com/xiximayou/p/12720454.html

Flatten层实现:https://www.cnblogs.com/xiximayou/p/12720518.html

上采样层UpSampling2D实现:https://www.cnblogs.com/xiximayou/p/12720558.html

 

class Dropout(Layer):
    """A layer that randomly sets a fraction p of the output units of the previous layer
    to zero.
    Parameters:
    -----------
    p: float
        The probability that unit x is set to zero.
    """
    def __init__(self, p=0.2):
        self.p = p
        self._mask = None
        self.input_shape = None
        self.n_units = None
        self.pass_through = True
        self.trainable = True

    def forward_pass(self, X, training=True):
        c = (1 - self.p)
        if training:
            self._mask = np.random.uniform(size=X.shape) > self.p
            c = self._mask
        return X * c

    def backward_pass(self, accum_grad):
        return accum_grad * self._mask

    def output_shape(self):
        return self.input_shape

核心就是生成一个随机失活神经元的遮罩。

posted @ 2020-04-17 16:06  西西嘛呦  阅读(2018)  评论(0编辑  收藏  举报