【python实现卷积神经网络】padding2D层实现
代码来源:https://github.com/eriklindernoren/ML-From-Scratch
卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html
激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus):https://www.cnblogs.com/xiximayou/p/12713081.html
损失函数定义(均方误差、交叉熵损失):https://www.cnblogs.com/xiximayou/p/12713198.html
优化器的实现(SGD、Nesterov、Adagrad、Adadelta、RMSprop、Adam):https://www.cnblogs.com/xiximayou/p/12713594.html
卷积层反向传播过程:https://www.cnblogs.com/xiximayou/p/12713930.html
全连接层实现:https://www.cnblogs.com/xiximayou/p/12720017.html
批量归一化层实现:https://www.cnblogs.com/xiximayou/p/12720211.html
池化层实现:https://www.cnblogs.com/xiximayou/p/12720324.html
class ConstantPadding2D(Layer): """Adds rows and columns of constant values to the input. Expects the input to be of shape (batch_size, channels, height, width) Parameters: ----------- padding: tuple The amount of padding along the height and width dimension of the input. If (pad_h, pad_w) the same symmetric padding is applied along height and width dimension. If ((pad_h0, pad_h1), (pad_w0, pad_w1)) the specified padding is added to beginning and end of the height and width dimension. padding_value: int or tuple The value the is added as padding. """ def __init__(self, padding, padding_value=0): self.padding = padding self.trainable = True if not isinstance(padding[0], tuple): self.padding = ((padding[0], padding[0]), padding[1]) if not isinstance(padding[1], tuple): self.padding = (self.padding[0], (padding[1], padding[1])) self.padding_value = padding_value def forward_pass(self, X, training=True): output = np.pad(X, pad_width=((0,0), (0,0), self.padding[0], self.padding[1]), mode="constant", constant_values=self.padding_value) return output def backward_pass(self, accum_grad): pad_top, pad_left = self.padding[0][0], self.padding[1][0] height, width = self.input_shape[1], self.input_shape[2] accum_grad = accum_grad[:, :, pad_top:pad_top+height, pad_left:pad_left+width] return accum_grad def output_shape(self): new_height = self.input_shape[1] + np.sum(self.padding[0]) new_width = self.input_shape[2] + np.sum(self.padding[1]) return (self.input_shape[0], new_height, new_width) class ZeroPadding2D(ConstantPadding2D): """Adds rows and columns of zero values to the input. Expects the input to be of shape (batch_size, channels, height, width) Parameters: ----------- padding: tuple The amount of padding along the height and width dimension of the input. If (pad_h, pad_w) the same symmetric padding is applied along height and width dimension. If ((pad_h0, pad_h1), (pad_w0, pad_w1)) the specified padding is added to beginning and end of the height and width dimension. """ def __init__(self, padding): self.padding = padding if isinstance(padding[0], int): self.padding = ((padding[0], padding[0]), padding[1]) if isinstance(padding[1], int): self.padding = (self.padding[0], (padding[1], padding[1])) self.padding_value = 0
需要注意的是输入的维度是:[batchsize,channel,height,width],因此在进行padding的时候是在最后两个维度上进行操作的。
假设输入的图像维度为[1,3,32,32],输入的padding=((1,1),(1,1)),accm_grad是后一层传到该层的梯度,那么padding2D的反向传播的梯度accm_grad=accm_grad[:, :, 1:33, 1:33]。