Fork me on GitHub

【猫狗数据集】加载保存的模型进行测试

已重新上传好数据集:

分割线-----------------------------------------------------------------

2020.3.10

发现数据集没有完整的上传到谷歌的colab上去,我说怎么计算出来的step不对劲。

测试集是完整的。

训练集中cat的确是有10125张图片,而dog只有1973张,所以完成一个epoch需要迭代的次数为:

(10125+1973)/128=94.515625,约等于95。

顺便提一下,有两种方式可以计算出数据集的量:

第一种:print(len(train_dataset))

第二种:在../dog目录下,输入ls | wc -c

今天重新上传dog数据集。

分割线-----------------------------------------------------------------

数据集下载地址:

链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw
提取码:2xq4

创建数据集:https://www.cnblogs.com/xiximayou/p/12398285.html

读取数据集:https://www.cnblogs.com/xiximayou/p/12422827.html

进行训练:https://www.cnblogs.com/xiximayou/p/12448300.html

保存模型并继续进行训练:https://www.cnblogs.com/xiximayou/p/12452624.html

epoch、batchsize、step之间的关系:https://www.cnblogs.com/xiximayou/p/12405485.html

 

我们在test目录下新建一个文件test.py

test.py

import sys
sys.path.append("/content/drive/My Drive/colab notebooks")
from utils import rdata
from model import resnet
import torch.nn as nn
import torch
import numpy as np
import torchvision


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

train_loader,test_loader,train_data,test_data=rdata.load_dataset()
model =torchvision.models.resnet18(pretrained=False)
model.fc = nn.Linear(model.fc.in_features,2,bias=False)
model.cuda()
#print(model) 

save_path="/content/drive/My Drive/colab notebooks/output/dogcat-resnet18.t7" 
checkpoint = torch.load(save_path)
model.load_state_dict(checkpoint['model'])
start_epoch = checkpoint['epoch']
start_loss=checkpoint["train_loss"]
start_acc=checkpoint["train_acc"]
print("当前epoch:{} 当前训练损失:{:.4f} 当前训练准确率:{:.4f}".format(start_epoch+1,start_loss,start_acc))

num_epochs=1
criterion=nn.CrossEntropyLoss()

# Train the model
total_step = len(test_loader)
def test():
  for epoch in range(num_epochs):
      tot_loss = 0.0
      correct = 0
      for i ,(images, labels) in enumerate(test_loader):
          images = images.cuda()
          labels = labels.cuda()

          # Forward pass
          outputs = model(images)
          _, preds = torch.max(outputs.data,1)
          loss = criterion(outputs, labels)
          tot_loss += loss.data
          correct += torch.sum(preds == labels.data).to(torch.float32)
          if (i+1) % 2 == 0:
              print('Epoch: [{}/{}], Step: [{}/{}], Loss: {:.4f}'
                    .format(epoch+1, num_epochs, i+1, total_step, loss.item()))
      ### Epoch info ####
      epoch_loss = tot_loss/len(test_data)
      print('test loss: {:.4f}'.format(epoch_loss))
      epoch_acc = correct/len(test_data)
      print('test acc: {:.4f}'.format(epoch_acc))
with torch.no_grad():
  test()

需要注意,测试的时候我们不需要进行反向传播更新参数。

结果:

当前epoch:2 当前训练损失:0.0037 当前训练准确率:0.8349
Epoch: [1/1], Step: [2/38], Loss: 1.0218
Epoch: [1/1], Step: [4/38], Loss: 0.9890
Epoch: [1/1], Step: [6/38], Loss: 0.9255
Epoch: [1/1], Step: [8/38], Loss: 0.9305
Epoch: [1/1], Step: [10/38], Loss: 0.9013
Epoch: [1/1], Step: [12/38], Loss: 1.0436
Epoch: [1/1], Step: [14/38], Loss: 0.8102
Epoch: [1/1], Step: [16/38], Loss: 0.9356
Epoch: [1/1], Step: [18/38], Loss: 0.8668
Epoch: [1/1], Step: [20/38], Loss: 1.0083
Epoch: [1/1], Step: [22/38], Loss: 1.0202
Epoch: [1/1], Step: [24/38], Loss: 0.8906
Epoch: [1/1], Step: [26/38], Loss: 1.0110
Epoch: [1/1], Step: [28/38], Loss: 0.8508
Epoch: [1/1], Step: [30/38], Loss: 0.9539
Epoch: [1/1], Step: [32/38], Loss: 0.9225
Epoch: [1/1], Step: [34/38], Loss: 0.9501
Epoch: [1/1], Step: [36/38], Loss: 0.8252
Epoch: [1/1], Step: [38/38], Loss: 0.9201
test loss: 0.0074
test acc: 0.5000

 

posted @ 2020-03-10 23:20  西西嘛呦  阅读(1798)  评论(0编辑  收藏  举报