洛谷 P5336 [THUSC2016]成绩单
Description
Solution
区间dp
状态定义
根据套路,我们定义 \(dp[i][j]\) 表示取走区间 \([i, j]\) 的最小花费。
但是只有区间范围似乎并不好转移,因为我们也不知道区间最大值以及最小值是多少。
所以我们再定义一个 \(f[i][j][x][y]\) 数组,表示区间 \([i, j]\) 中所有数在区间 \([x, y]\)时,需要的最小花费。
注意:这里 \(f[i][j][x][y]\) 中不一定 \([i, j]\) 中的最小值和最大值就是 \(x\) 和 \(y\)。
转移
这里还要进行分类讨论:
- 直接合并 \(j\) 和 \([i, j - 1]\) 或合并 \(i\) 和 \([i + 1, j]\),那么转移方程就是
f[i][j][min(x, a[j])][max(y, a[j])] = min(f[i][j][min(x, a[j])][max(y, a[j])], f[i][j - 1][x][y]);
f[i][j][min(x, a[i])][max(y, a[i])] = min(f[i][j][min(x, a[i])][max(y, a[i])], f[i + 1][j][x][y]);
- 枚举断点 \(k\),先把 \([i, k]\) 合并好之后再和 \([k + 1, j]\) 合并(此时 \([k + 1, j]\) 还没有合并),或先把 \([k + 1, j]\) 合并好之后再和 \([i, k]\) 合并(同理)。
for(ll k = i; k < j; k++)
f[i][j][x][y] = min(f[i][j][x][y], min(f[i][k][x][y] + dp[k + 1][j], f[k + 1][j][x][y] + dp[i][k]));
不过好像只转移同一个方向的就够了,不知道为什么 \(QwQ\)。
注意开 \(long \ long\),以及要先进行离散化。
Code
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#define ll long long
using namespace std;
const ll N = 55;
ll n, A, B;
ll a[N], b[N];
ll f[N][N][N][N], dp[N][N];
signed main(){
scanf("%lld%lld%lld", &n, &A, &B);
for(ll i = 1; i <= n; i++)
scanf("%lld", &a[i]), b[i] = a[i];
sort(b + 1, b + 1 + n);
ll tot = unique(b + 1, b + 1 + n) - b - 1;
memset(f, 0x3f, sizeof(f));
memset(dp, 0x3f, sizeof(dp));
for(ll i = 1; i <= n; i++){
a[i] = lower_bound(b + 1, b + 1 + tot, a[i]) - b;
f[i][i][a[i]][a[i]] = 0;
dp[i][i] = A;
}
for(ll len = 2; len <= n; len++)
for(ll i = 1; i + len - 1 <= n; i++){
ll j = i + len - 1;
for(ll x = 1; x <= tot; x++)
for(ll y = 1; y <= tot; y++){
f[i][j][min(x, a[j])][max(y, a[j])] = min(f[i][j][min(x, a[j])][max(y, a[j])], f[i][j - 1][x][y]);
f[i][j][min(x, a[i])][max(y, a[i])] = min(f[i][j][min(x, a[i])][max(y, a[i])], f[i + 1][j][x][y]);
for(ll k = i; k < j; k++)
f[i][j][x][y] = min(f[i][j][x][y], min(f[i][k][x][y] + dp[k + 1][j], f[k + 1][j][x][y] + dp[i][k]));
}
for(ll x = 1; x <= tot; x++)
for(ll y = 1; y <= tot; y++)
dp[i][j] = min(dp[i][j], f[i][j][x][y] + A + B * (b[y] - b[x]) * (b[y] - b[x]));
}
printf("%lld\n", dp[1][n]);
return 0;
}