摘要: 习题4.证明:置换群$G$中若含有奇置换,则$G$必有指数为$2$的子群.证明 易知$G$中若有奇置换,则奇偶置换各半.不妨设$G$的偶置换为$${\rm id}=\sigma_{1},\sigma_{2},\cdots,\sigma_{m}$$而奇置换$\phi_{1},\cdots,\phi_... 阅读全文
posted @ 2014-07-17 19:48 龙凤呈祥123 阅读(6170) 评论(0) 推荐(0) 编辑