爬虫性能相关并发方案

在编写爬虫时,性能的消耗主要在IO请求中,当单进程单线程模式下请求URL时必然会引起等待,从而使得请求整体变慢
1.利用线程实现并发(io密集型用--http请求是io密集型)
线程开多了性能降低,线程上下文切换耗时多,可以实现并发,但是,请求发送出去后和返回之前,中间时期线程空闲
(1)编写方式一(多线程直接返回处理)

from concurrent.futures import ThreadPoolExecutor   #线程池
import requests

#线程函数,把任务url放进来执行
def task(url):
    response = requests.get(url)
    print(url,response)


pool = ThreadPoolExecutor(7)                          #声明一个线程池
url_list = [
    'http://www.cnblogs.com/',
    'http://huaban.com/favorite/beauty/',
    'http://www.bing.com',
    'http://www.zhihu.com',
    'http://www.sina.com',
    'http://www.baidu.com',
    'http://www.autohome.com.cn',
]
for url in url_list:
    pool.submit(task,url)                             #把请求都放到调用线程函数里

pool.shutdown(wait=True)

(2)编写方式二(多线程+回调函数处理)
第一个请求来第一个url过来执行task下载任务,当下载页面完成之后会有response,返回之后会执行add_done_callback的done方法,done方法里的参数就有task函数执行后返回过来的值

from concurrent.futures import ThreadPoolExecutor    #线程池
import requests

#线程函数,把任务url放进来下载页面
def task(url):
    response = requests.get(url)
    return response

#执行函数执行task方法返回过来的值
def done(future,*args,**kwargs):
    response = future.result()                      #result是task执行后返回过来的结果
    print(response.status_code,response.content)

pool = ThreadPoolExecutor(7)                         #声明一个线程池
url_list = [
    'http://www.cnblogs.com/',
    'http://huaban.com/favorite/beauty/',
    'http://www.bing.com',
    'http://www.zhihu.com',
    'http://www.sina.com',
    'http://www.baidu.com',
    'http://www.autohome.com.cn',
]
for url in url_list:
    v = pool.submit(task,url)                        #把请求url都放到调用线程函数task里接收返回值赋值v
    v.add_done_callback(done)                        #v.add_done_callback执行done函数

pool.shutdown(wait=True)

2.利用进程实现并发(计算密集型用进程)
可以实现并发,但是,请求发送出去后和返回之前,中间时期进程空闲
(1)编写方式一(多进程接返回处理)

from concurrent.futures import ProcessPoolExecutor   #进程池
import requests

#进程函数,把任务url放进来执行
def task(url):
    response = requests.get(url)
    print(url,response)


pool = ProcessPoolExecutor(2)                          #声明一个进程池
url_list = [
    'http://www.cnblogs.com/',
    'http://huaban.com/favorite/beauty/',
    'http://www.bing.com',
    'http://www.zhihu.com',
    'http://www.sina.com',
    'http://www.baidu.com',
    'http://www.autohome.com.cn',
]
for url in url_list:
    pool.submit(task,url)                             #把请求都放到调用线程函数里

pool.shutdown(wait=True)

(2)编写方式二(多进程+回调函数处理)

'''
第一个请求来第一个url过来执行task下载任务,当下载页面完成之后会有response,返回之后会执行add_done_callback的done方法,
done方法里的参数就有task函数执行后返回过来的值
'''

from concurrent.futures import ProcessPoolExecutor    #线程池
import requests

#线程函数,把任务url放进来下载页面
def task(url):
    response = requests.get(url)
    return response

#执行函数执行task方法返回过来的值
def done(future,*args,**kwargs):
    response = future.result()                      #result是task执行后返回过来的结果
    print(response.status_code,response.content)

pool = ProcessPoolExecutor(7)                         #声明一个线程池
url_list = [
    'http://www.cnblogs.com/',
    'http://huaban.com/favorite/beauty/',
    'http://www.bing.com',
    'http://www.zhihu.com',
    'http://www.sina.com',
    'http://www.baidu.com',
    'http://www.autohome.com.cn',
]
for url in url_list:
    v = pool.submit(task,url)                        #把请求url都放到调用线程函数task里接收返回值赋值v
    v.add_done_callback(done)                        #v.add_done_callback执行done函数

pool.shutdown(wait=True)

通过上述代码均可以完成对请求性能的提高,对于多线程和多进行的缺点是在IO阻塞时会造成了线程和进程的浪费,所以异步IO会是首选:
(1)asyncio模块
方式一:asyncio只支持TCP请求,不支持Http请求

import asyncio
#单线程执行两个任务

#task任务
@asyncio.coroutine
def task():
    print('before...task......')             #先执行这一句
    yield from asyncio.sleep(5)                #等待五秒
    print('end...task......')                #


tasks = [task(), task()]                        #列表定义两个任务

#把两个任务放到这里
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.gather(*tasks))
loop.close()

方式二:asyncio通过自己封装http数据包一个线程完成异步io操作,支持Http请求

import asyncio

@asyncio.coroutine
def task(host, url='/'):
    print('开始请求',host,url)
    reader, writer = yield from asyncio.open_connection(host, 80)                        #创建连接

    request_header_content = "GET %s HTTP/1.0\r\nHost: %s\r\n\r\n" % (url, host,)   #http请求格式
    request_header_content = bytes(request_header_content, encoding='utf-8')

    writer.write(request_header_content)
    yield from writer.drain()
    text = yield from reader.read()
    print('获取结果',host, url, text)
    writer.close()

tasks = [
    task('www.cnblogs.com', '/xixi/'),
    task('dig.chouti.com', '/pic/show?nid=4073644713430508&lid=10273091')
]

loop = asyncio.get_event_loop()
results = loop.run_until_complete(asyncio.gather(*tasks))
loop.close()

方式三:asyncio+aiohttp
安装pip3 install aiohttp

import aiohttp                      #aiohttp模块:封装Http数据包
import asyncio                      #异步功能

@asyncio.coroutine
def fetch_async(url):
    print(url)
    response = yield from aiohttp.request('GET', url)                  #用aiohttp去执行
    print(url, response)
    response.close()


tasks = [fetch_async('http://www.baidu.com/'), fetch_async('http://www.sina.com/')]

event_loop = asyncio.get_event_loop()
results = event_loop.run_until_complete(asyncio.gather(*tasks))
event_loop.close()

方式四:asyncio+requests
安装pip3 install requests

import asyncio
import requests                            #requests模块:封装Http数据包

@asyncio.coroutine
def task(func, *args):
    print(func,args)
    loop = asyncio.get_event_loop()
    future = loop.run_in_executor(None, func, *args)    #执行requests.get('http://www.cnblogs.com/xixi/')
    response = yield from future
    print(response.url, response.content)

#tasks列表里的函数作为参数传到task函数里func参数
tasks = [
    task(requests.get, 'http://www.cnblogs.com/xixi/'),
    task(requests.get, 'http://dig.chouti.com/pic/show?nid=4073644713430508&lid=10273091')
]

loop = asyncio.get_event_loop()
results = loop.run_until_complete(asyncio.gather(*tasks))
loop.close()

(2)gevent模块:
方式一:gevent依赖greenlet协程模块+异步IO
安装pip3 install greenlet
安装pip3 install gevent

import gevent
import requests

from gevent import monkey
monkey.patch_all()                                                     #把内部找到所有原来socket变为异步IO的socket

def task(method, url, req_kwargs):
    print(method, url, req_kwargs)
    response = requests.request(method=method, url=url, **req_kwargs)    #封装
    print(response.url, response.content)

#发送请求
gevent.joinall([
    gevent.spawn(task, method='get', url='https://www.python.org/', req_kwargs={}),
    gevent.spawn(task, method='get', url='https://www.yahoo.com/', req_kwargs={}),
    gevent.spawn(task, method='get', url='https://github.com/', req_kwargs={}),
])

方式二:gevent(协程池,最多发多少个请求)+requests
安装pip3 install greenlet
安装pip3 install gevent

import gevent
import requests

from gevent import monkey
monkey.patch_all()                                                      #把内部找到所有原来socket变为异步IO的socket

def task(method, url, req_kwargs):
    print(method, url, req_kwargs)
    response = requests.request(method=method, url=url, **req_kwargs)    #封装
    print(response.url, response.content)

#发送请求(协程池控制最大协程数量)
from gevent.pool import Pool
pool = Pool(5)                                                           #最多向远程发5个
gevent.joinall([
    pool.spawn(task, method='get', url='https://www.python.org/', req_kwargs={}),
    pool.spawn(task, method='get', url='https://www.yahoo.com/', req_kwargs={}),
    pool.spawn(task, method='get', url='https://www.github.com/', req_kwargs={}),
])

方式三:
安装pip3 install grequests

import grequests
#里面帮助下载执行
request_list = [
    grequests.get('https://www.python.org', timeout=0.001),
    grequests.get('http://www.baidu.com/'),
    grequests.get('http://httpbin.org/status/500')
]

#执行并获取响应列表
response_list = grequests.map(request_list,size=5)
print(response_list)

(3)Twisted
(4)Tornado

from tornado.httpclient import AsyncHTTPClient
from tornado.httpclient import HTTPRequest
from tornado import ioloop

COUNT = 0
def handle_response(response):
    global COUNT
    COUNT -= 1
    if response.error:
        print("Error:", response.error)
    else:
        print(response.body)
        # 方法同twisted
        # ioloop.IOLoop.current().stop()
    if COUNT == 0:
        ioloop.IOLoop.current().stop()

def func():
    url_list = [
        'http://www.baidu.com',
        'http://www.bing.com',
    ]
    global COUNT
    COUNT = len(url_list)
    for url in url_list:
        print(url)
        http_client = AsyncHTTPClient()
        http_client.fetch(HTTPRequest(url), handle_response)      #回调函数


ioloop.IOLoop.current().add_callback(func)
ioloop.IOLoop.current().start() # 死循环

以上均是Python内置以及第三方模块提供异步IO请求模块,使用简便大大提高效率,而对于异步IO请求的本质则是【非阻塞Socket】+【IO多路复用】
3.自定义异步IO模块(自定义socket客户端)
1)标准HTTP请求本质,阻塞

import socket
sk = socket.socket()
#1.连接
sk.connect(('www.baidu.com',80,))                                   #IO阻塞
print('连接成功了...')

#2.连接成功发送HTTP这种格式的数据(响应头和响应体用两个换行分割)
#sk.send(b'GET / HTTP/1.0\r\nHost:www.baidu.com\r\n\r\n')                           #GET请求
sk.send(b'POST / HTTP/1.0\r\nHost:www.baidu.com\r\n\r\nk1=v1&k2=v2')      #POST请求

#3.等待着服务端响应
data = sk.recv(8096)                                                  #IO阻塞
print(data)

#4.关闭连接
sk.close()

2)HTTP请求本质,非阻塞

import socket

sk = socket.socket()
sk.setblocking(False)                   #设置非阻塞
#1.连接
try:
    sk.connect(('www.baidu.com',80,)) #IO阻塞
    print('连接成功了...')
except BlockingIOError as e:
    print(e)

#2.连接成功发送消息
sk.send(b'GET / HTTP/1.0\r\nHost:www.baidu.com\r\n\r\n')
#sk.send(b'POST / HTTP/1.0\r\nHost:www.baidu.com\r\n\r\nk1=v1&k2=v2')

#3. 等待着服务端响应
data = sk.recv(8096)                    #IO阻塞
print(data)

#关闭连接
sk.close()

3)自定义非阻塞select+socket完成异步IO,通过一个线程向很多地方把请求发出去

import socket
import select                                 #监听多个socket对象

#定义HttpRequest类封装了socket和主机名字
class HttpRequest:
    def __init__(self,sk,host,callback):
        self.socket = sk
        self.host = host
        self.callback = callback
    def fileno(self):
        return self.socket.fileno()

#定义HttpResponse类分割请求头请求体
class HttpResponse:
    def __init__(self,recv_data):
        self.recv_data = recv_data
        self.header_dict = {}
        self.body = None
        #执行initialize函数进行请求体请求头分割
        self.initialize()
    def initialize(self):
        headers, body = self.recv_data.split(b'\r\n\r\n', 1)
        self.body = body
        header_list = headers.split(b'\r\n')
        for h in header_list:
            h_str = str(h,encoding='utf-8')
            v = h_str.split(':',1)
            if len(v) == 2:
                self.header_dict[v[0]] = v[1]

#定义一个类AsyncRequest
class AsyncRequest:
    def __init__(self):
        self.conn = []                      #conn等于空列表,有值代表接收数据,全部接收完清空跳出循环
        self.connection = []                #connection等于空列表,有值代表没连接成功,每连接成功一个删除一个值,用于检测是否已经连接成功,

    #发送连接请求
    def add_request(self,host,callback):        #host,callback是每个主机名的回调函数
        try:
            sk = socket.socket()                 #创建socket对象进行连接
            sk.setblocking(0)                    #设置非阻塞
            sk.connect((host,80,))               #ip+默认端口(向某个地址发请求)
        except BlockingIOError as e:
            pass
        request = HttpRequest(sk,host,callback)  #创建request对象序列化HttpRequest类把socket和主机名字加进去
        self.conn.append(request)                #把request放到conn
        self.connection.append(request)          #把request放到connection

    #连接成功发送消息:执行run之前conn和connection已经有HttpRequest对象,这个对象里有socket和主机名字
    def run(self):
        while True:
            rlist,wlist,elist = select.select(self.conn,self.connection,self.conn,0.05)   #死循环把conn和connection放进去
            #每一个w是HttpRequest对象,只要能循环到,表示socket和服务器端已经连接成功
            for w in wlist:
                print(w.host,'连接成功...')
                #发送数据
                tpl = "GET / HTTP/1.0\r\nHost:%s\r\n\r\n" %(w.host,)
                w.socket.send(bytes(tpl,encoding='utf-8'))
                self.connection.remove(w)                                   #从connection里把w删除掉
            #r是HttpRequest对象,等待接收返回值,r里有conn和主机名
            for r in rlist:
                recv_data = bytes()                                         #recv_data默认等于空的字节
                #循环一直接收返回数据
                while True:
                    try:
                        chunck = r.socket.recv(8096)                        #接收返回数据
                        recv_data += chunck                                 #每接收一次让recv_data加等于一个chunck
                    except Exception as e:                                  #如果出异常代表接收完了跳出循环
                        break
                #print(r.host,recv_data)                                    #recv_data是返回的数据
                response = HttpResponse(recv_data)                          #创建response对象实例化HttpResponse类把recv_data传进去
                r.callback(response)                                        #接收response的返回
                r.socket.close()                                            #终止http请求
                self.conn.remove(r)                                         #select不需要监听请求发没发
            if len(self.conn) == 0:                                         #判断conn是否等于0,如果等于0代表全部执行完跳出循环
                break

def f1(response):
    print('保存到文件',response.header_dict)

def f2(response):
    print('保存到数据库', response.header_dict)

#定义列表
url_list = [
    {'host':'www.baidu.com','callback': f1},        #给host用f1函数
    {'host':'cn.bing.com','callback': f2},          #给host用f2函数
    {'host':'www.sina.com','callback': f2},         #给host用f2函数
]

req = AsyncRequest()                                  #创建req对象实例化AsyncRequest()把url_list所有元素加进去
for item in url_list:                                 #循环url_list这个列表
    req.add_request(item['host'],item['callback'])    #add_request把列表内容传到AsyncRequest()里,会为每一个创造一个socket对象进行连接

req.run()

 

posted on 2019-06-03 10:49  我不是西西  阅读(467)  评论(0编辑  收藏  举报