SHUOJ Arithmetic Sequence (FFT)

链接:http://acmoj.shu.edu.cn/problem/533/

题意:求一个序列中,有多少三元组(其中元素不重复)在任意的排列下能构成等差数列。
分析:等差数列:\(A_j-A_i=A_k-A_j\),即\(2A_j=A_i+A_k\),枚举\(A_i+A_j\)的所有情况对应的个数,再扫一遍求解。
先统计出每个数对应的出现次数,FFT计算出和的组合情况。但是要减去\(A_i+A_i\)得到的结果以及\(A_i+A_j\)以及\(A_j+A_i\)重复的计算。
现在对于数\(A_j\),假设\(cnt=2*A_j\)的系数,当然cnt中要减去\(A_j\)本身和一个值与\(A_j\)相等的数组合而成的情况。枚举完这个数以后,把这个数从序列中抹去,因为这个数对结果做出的贡献已经计算,之后的统计中该数以及该数对结果的贡献不能重复计算。

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 1e5 + 10;
const double PI = acos(-1.0);
struct Complex{
    double x, y;
    inline Complex operator+(const Complex b) const {
        return (Complex){x +b.x,y + b.y};
    }
    inline Complex operator-(const Complex b) const {
        return (Complex){x -b.x,y - b.y};
    }
    inline Complex operator*(const Complex b) const {
        return (Complex){x *b.x -y * b.y,x * b.y + y * b.x};
    }
} va[MAXN * 2 + MAXN / 2], vb[MAXN * 2 + MAXN / 2];
int lenth = 1, rev[MAXN * 2 + MAXN / 2];
int N, M;   // f 和 g 的数量
    //f g和 的系数
    // 卷积结果
    // 大数乘积
int f[MAXN],g[MAXN];
vector<LL> conv;
vector<LL> multi;
void debug(){for(int i=0;i<conv.size();++i) cout<<conv[i]<<" ";cout<<endl;}
//f g
void init()
{
    int tim = 0;
    lenth = 1;
    conv.clear(), multi.clear();
    memset(va, 0, sizeof va);
    memset(vb, 0, sizeof vb);
    while (lenth <= N + M - 2)
        lenth <<= 1, tim++;
    for (int i = 0; i < lenth; i++)
        rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (tim - 1));
}
void FFT(Complex *A, const int fla)
{
    for (int i = 0; i < lenth; i++){
        if (i < rev[i]){
            swap(A[i], A[rev[i]]);
        }
    }
    for (int i = 1; i < lenth; i <<= 1){
        const Complex w = (Complex){cos(PI / i), fla * sin(PI / i)};
        for (int j = 0; j < lenth; j += (i << 1)){
            Complex K = (Complex){1, 0};
            for (int k = 0; k < i; k++, K = K * w){
                const Complex x = A[j + k], y = K * A[j + k + i];
                A[j + k] = x + y;
                A[j + k + i] = x - y;
            }
        }
    }
}
void getConv(){             //求多项式
    init();
    for (int i = 0; i < N; i++)
        va[i].x = f[i];
    for (int i = 0; i < M; i++)
        vb[i].x = g[i];
    FFT(va, 1), FFT(vb, 1);
    for (int i = 0; i < lenth; i++)
        va[i] = va[i] * vb[i];
    FFT(va, -1);
    for (int i = 0; i <= N + M - 2; i++)
        conv.push_back((LL)(va[i].x / lenth + 0.5));
}

void getMulti()             //求A*B
{
    getConv();
    multi = conv;
    reverse(multi.begin(), multi.end());
    multi.push_back(0);
    int sz = multi.size();
    for (int i = 0; i < sz - 1; i++){
        multi[i + 1] += multi[i] / 10;
        multi[i] %= 10;
    }
    while (!multi.back() && multi.size() > 1)
        multi.pop_back();
    reverse(multi.begin(), multi.end());
}

int a[MAXN];
int cnt[MAXN];
int main()
{
    #ifndef ONLINE_JUDGE
        freopen("in.txt","r",stdin);
        freopen("out.txt","w",stdout);
    #endif
    int T; scanf("%d",&T);
    while(T--){
        int n; scanf("%d",&n);
        int mx = -1;
        memset(cnt,0,sizeof(cnt));
        for(int i =1;i<=n;++i){
            scanf("%d",&a[i]);
            mx = max(mx,a[i]);
            cnt[a[i]]++;
        }
        N = M = mx+1;
        for(int i=0;i<N;++i){
            f[i] = g[i] = cnt[i];
        }
        getConv();
        int sz = conv.size();
        for(int i=1;i<=n;++i){
            conv[a[i]*2]--;
        }
        for(int i=0;i<sz;++i){
            conv[i]>>=1;
        }
        LL res=0;
        //debug();
        //sort(a+1,a+n+1);
        for(int i=1;i<=n;++i){
            if(2*a[i]>=sz) continue;
            LL tmp = conv[2*a[i]];
            tmp -= cnt[a[i]]-1;           //减去由自己构成的
            conv[2*a[i]] -= cnt[a[i]]-1;    //将Ai对结果的贡献抹去
            cnt[a[i]]--;                    //将Ai从原序列中抹去
            res += tmp;
        }
        printf("%lld\n",res);
    }
    return 0;
}

posted @ 2018-09-28 16:30  xiuwenL  阅读(309)  评论(0编辑  收藏  举报