HDU - 4609 3-idiots (FFT+母函数)
题意:给N个数,求任意选三个数能构成三角形的概率
分析:枚举两条边之和的复杂度\(O(N^2)\),显然不行,所以要更高效地做到枚举出两边之和.
所以用生成函数搭配FFT在\(O(NlogN)\)的时间内计算两边之和对应的个数.设\(cnt[i]\)为值\(i\)出现的次数.先不考虑元素的重复使用情况,则卷积的两个函数都是数组\(cnt[i]\).
设\(ans[i]\)为两边之和为i的个数,但需要减去重复计算的情况,每个ans[i]*2的项需要减1;重复枚举了\(ans[i]+ans[j]\)和\(ans[j]+ans[i]\),所以每个答案需要除2.之后处理出前缀和.
得到两边之和后,枚举三角形的最长边.将给定的\(a[i]\)排序.设当前枚举到值x时,另外两边之和可以是\([x+1,maxsum]\),而其中要减去一些不符合条件的情况:
- 两边中有一条边枚举到了自己,减n-1;
- 两边中的每条边都比自己大,减去(n-1-i)*(n-2-i)/2;
- 一条边小于等于自己,一条边大于等于自己,减去(n-1-i)*i;
因为最后要求概率,分母即\(C(n,3)\)
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 2e5 + 10;
const double PI = acos(-1.0);
struct Complex{
double x, y;
inline Complex operator+(const Complex b) const {
return (Complex){x +b.x,y + b.y};
}
inline Complex operator-(const Complex b) const {
return (Complex){x -b.x,y - b.y};
}
inline Complex operator*(const Complex b) const {
return (Complex){x *b.x -y * b.y,x * b.y + y * b.x};
}
} va[MAXN * 2 + MAXN / 2], vb[MAXN * 2 + MAXN / 2];
int lenth = 1, rev[MAXN * 2 + MAXN / 2];
int N, M; // f 和 g 的数量
//f g和 的系数
// 卷积结果
// 大数乘积
int f[MAXN],g[MAXN];
vector<LL> conv;
vector<LL> multi;
//f g
void init()
{
int tim = 0;
lenth = 1;
conv.clear(), multi.clear();
memset(va, 0, sizeof va);
memset(vb, 0, sizeof vb);
while (lenth <= N + M - 2)
lenth <<= 1, tim++;
for (int i = 0; i < lenth; i++)
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (tim - 1));
}
void FFT(Complex *A, const int fla)
{
for (int i = 0; i < lenth; i++){
if (i < rev[i]){
swap(A[i], A[rev[i]]);
}
}
for (int i = 1; i < lenth; i <<= 1){
const Complex w = (Complex){cos(PI / i), fla * sin(PI / i)};
for (int j = 0; j < lenth; j += (i << 1)){
Complex K = (Complex){1, 0};
for (int k = 0; k < i; k++, K = K * w){
const Complex x = A[j + k], y = K * A[j + k + i];
A[j + k] = x + y;
A[j + k + i] = x - y;
}
}
}
}
void getConv()
{
init();
for (int i = 0; i < N; i++)
va[i].x = f[i];
for (int i = 0; i < M; i++)
vb[i].x = g[i];
FFT(va, 1), FFT(vb, 1);
for (int i = 0; i < lenth; i++)
va[i] = va[i] * vb[i];
FFT(va, -1);
for (int i = 0; i <= N + M - 2; i++)
conv.push_back((LL)(va[i].x / lenth + 0.5));
}
void getMulti()
{
getConv();
multi = conv;
reverse(multi.begin(), multi.end());
multi.push_back(0);
int sz = multi.size();
for (int i = 0; i < sz - 1; i++){
multi[i + 1] += multi[i] / 10;
multi[i] %= 10;
}
while (!multi.back() && multi.size() > 1)
multi.pop_back();
reverse(multi.begin(), multi.end());
}
int a[MAXN];
int cnt[MAXN];
LL tot[MAXN];
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int T,n; scanf("%d",&T);
while(T--){
scanf("%d",&n);
int mx = 0;
memset(cnt,0,sizeof(cnt));
for(int i=0;i<n;++i){
scanf("%d",&a[i]);
cnt[a[i]]++;
mx = max(mx,a[i]);
}
N = M = mx+1;
for(int i=0;i<=mx;++i){
f[i] = g[i] = cnt[i];
}
getConv();
int len = conv.size();
for(int i=0;i<n;++i){
--conv[a[i]<<1]; //同一个数选择两遍,减去
}
for(int i=0;i<len;++i){
conv[i]>>=1;
}
for(int i=1;i<len;++i){
conv[i] += conv[i-1];
}
sort(a,a+n);
LL res=0;
for(int i=0;i<n;++i){
LL tmp = conv[len-1] - conv[a[i]];
tmp -= n-1;
tmp -=(LL)i*(n-i-1);
if(n-i-1>1) tmp -= (LL)(n-i-1)*(n-i-2)/2;
res += tmp;
}
printf("%.7f\n",(double)res*1.0/((LL)n*(n-1)*(n-2)/6));
}
return 0;
}
为了更好的明天