HDU - 5406 CRB and Apple (费用流)

题意:对于给定的物品,求两个在高度上单调不递增,权值上单调不递减的序列,使二者长度之和最大。
分析:可以用费用流求解,因为要求长度和最大,视作从源点出发的流量为2的费用流,建负权边,每个物品只能取一次,且花费为-1。将每个物品拆成入点和出点,中间建容量为1,费用为-1的弧。建源点s和超级源点S,S到s建容量为2,费用为0的弧,表示只有两个序列。源点s向每个入点建容量为1,费用为0的弧,表示每个点都可作为序列的首项。出点向汇点建容量为1,费用为0的弧,表示每个点都可作为序列的末项。
对给定物品按高度和权值排序后,从权值较小的物品向权值较大的物品建边,容量为1,花费为0。
跑出费用流后对花费取反就是答案。spfa要用栈优化,队列会T。

#include<iostream>
#include<cstring>
#include<stdio.h>
#include<algorithm>
#include<string>
#include<cmath>
#include<set>
#include<map>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
const int MAXN = 2005;
const int MAXM = 2000005;
const int INF = 0x3f3f3f3f;
struct Edge{
    int to, next, cap, flow, cost;
} edge[MAXM];
int head[MAXN], tot;
int pre[MAXN], dis[MAXN];
bool vis[MAXN];
int N;
void init(int n)
{
    N = n;
    tot = 0;
    memset(head, -1, sizeof(head));
}

void AddEdge(int u, int v, int cap, int cost)
{
    edge[tot] = (Edge){v,head[u],cap,0,cost};
    head[u] = tot++;
    edge[tot] = (Edge){u,head[v],0,0,-cost};
    head[v] = tot++;
}

bool spfa(int s, int t){
    stack<int> q;
    for (int i = 0; i < N; i++){
        dis[i] = INF;
        vis[i] = false;
        pre[i] = -1;
    }
    dis[s] = 0;
    vis[s] = true;
    q.push(s);
    while (!q.empty()){
        int u = q.top();
        q.pop();
        vis[u] = false;
        for (int i = head[u]; i != -1; i = edge[i].next){
            int v = edge[i].to;

            if (edge[i].cap > edge[i].flow && dis[v] > dis[u] + edge[i].cost){
                dis[v] = dis[u] + edge[i].cost;
                pre[v] = i;
                if (!vis[v]){
                    vis[v] = true;
                    q.push(v);
                }
            }
        }
    }
    if (pre[t] == -1) return false;
    else  return true;
}

int minCostMaxflow(int s, int t, int &cost){
    int flow = 0;
    cost = 0;
    while (spfa(s, t)){
        int Min = INF;
        for (int i = pre[t]; i != -1; i = pre[edge[i ^ 1].to]){
            if (Min > edge[i].cap - edge[i].flow)
                Min = edge[i].cap - edge[i].flow;
        }
        for (int i = pre[t]; i != -1; i = pre[edge[i ^ 1].to]){
            edge[i].flow += Min;
            edge[i ^ 1].flow -= Min;
            cost += edge[i].cost * Min;
        }
        flow += Min;
    }
    return flow;
}

struct Node{
    int h,w;
    bool operator<(const Node &rhs) const{
        if(h==rhs.h) return w<rhs.w;
        return h>rhs.h;
    }
}vz[MAXN];

int main()
{
    #ifndef ONLINE_JUDGE
        freopen("in.txt","r",stdin);
        freopen("out.txt","w",stdout);
    #endif
    int T; scanf("%d",&T);
    while(T--){
        int N; scanf("%d",&N);
        int u,v;
        for(int i=1;i<=N;++i){
            scanf("%d %d",&vz[i].h,&vz[i].w);
        }
        sort(vz+1,vz+N+1);
        init(2*N+4);
        int s = 2*N+1, t = 2*N+2;
        int S = 0;
        for(int i=1;i<=N;++i){
            AddEdge(i+N,t,1,0);
            AddEdge(s,i,1,0);
            AddEdge(i,i+N,1,-1);
            int x = INF;
            for(int j=i+1;j<=N;++j){
                if(vz[i].w<=vz[j].w){
                    AddEdge(i+N,j,1,0);
                }
            }
        }
        AddEdge(S,s,2,0);
        int cost;
        minCostMaxflow(S,t,cost);
        printf("%d\n",-cost);
    }
    return 0;
}
posted @ 2018-09-23 15:14  xiuwenL  阅读(192)  评论(0编辑  收藏  举报