POJ - 2125 Destroying The Graph (最小点权覆盖)
题意:给一张图,现在要删去所有的边,删去一个点的所有入边和所有出边都有其对应\(W_{i+}\)和\(W_{i-}\).求删去该图的最小花费,并输出解
分析:简而言之就是用最小权值的点集去覆盖所有的边.
模型转化到网络流的建图中,将图中的边视作点,并将其一拆为二,出点作为X部,入点作为Y部,若有边(u,v)则由建边u->v+N,容量正无穷.
将原图中的点视作边,入边的花费即建边i+N->T,容量为其花费;出边的花费建边S->i,容量也是为其花费.
跑出S->T的最大流,|最大流| = |最小割| = |最小点权覆盖|.
还需输出每条边的解决方案.在残余网上,与S相连的点,若满流则表示没有选择该点;与T相连的点,若满流则表示选择该点.从源点dfs一次后,再遍历从S出发和从T出发的所有弧即可.
*其性质和最大权闭合子图很相似.
#include<iostream>
#include<cstring>
#include<stdio.h>
#include<algorithm>
#include<string>
#include<cmath>
#include<vector>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAXN=3010;//点数的最大值
const int MAXM=400010;//边数的最大值
#define captype int
struct SAP_MaxFlow{
struct Edge{
int from,to,next;
captype cap;
}edges[MAXM];
int tot,head[MAXN];
int gap[MAXN];
int dis[MAXN];
int cur[MAXN];
int pre[MAXN];
void init(){
tot=0;
memset(head,-1,sizeof(head));
}
void AddEdge(int u,int v,captype c,captype rc=0){
edges[tot] = (Edge){u,v,head[u],c}; head[u]=tot++;
edges[tot] = (Edge){v,u,head[v],rc}; head[v]=tot++;
}
captype maxFlow_sap(int sNode,int eNode, int n){//n是包括源点和汇点的总点个数,这个一定要注意
memset(gap,0,sizeof(gap));
memset(dis,0,sizeof(dis));
memcpy(cur,head,sizeof(head));
pre[sNode] = -1;
gap[0]=n;
captype ans=0;
int u=sNode;
while(dis[sNode]<n){
if(u==eNode){
captype Min=INF ;
int inser;
for(int i=pre[u]; i!=-1; i=pre[edges[i^1].to])
if(Min>edges[i].cap){
Min=edges[i].cap;
inser=i;
}
for(int i=pre[u]; i!=-1; i=pre[edges[i^1].to]){
edges[i].cap-=Min;
edges[i^1].cap+=Min;
}
ans+=Min;
u=edges[inser^1].to;
continue;
}
bool flag = false;
int v;
for(int i=cur[u]; i!=-1; i=edges[i].next){
v=edges[i].to;
if(edges[i].cap>0 && dis[u]==dis[v]+1){
flag=true;
cur[u]=pre[v]=i;
break;
}
}
if(flag){
u=v;
continue;
}
int Mind= n;
for(int i=head[u]; i!=-1; i=edges[i].next)
if(edges[i].cap>0 && Mind>dis[edges[i].to]){
Mind=dis[edges[i].to];
cur[u]=i;
}
gap[dis[u]]--;
if(gap[dis[u]]==0) return ans;
dis[u]=Mind+1;
gap[dis[u]]++;
if(u!=sNode) u=edges[pre[u]^1].to; //退一条边
}
return ans;
}
}F;
int vis[MAXN];
void dfs(int u)
{
vis[u] = 1;
for(int i=F.head[u];~i;i=F.edges[i].next){
int v= F.edges[i].to;
if(!vis[v] && F.edges[i].cap>0){
dfs(v);
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int N,M;
int u,v,tmp;
while(scanf("%d %d",&N, &M)==2){
F.init();
int s = 0,t = N*2+1;
for(int i=1;i<=N;++i){
scanf("%d",&tmp);
F.AddEdge(i+N,t,tmp);
}
for(int i=1;i<=N;++i){
scanf("%d",&tmp);
F.AddEdge(s,i,tmp);
}
for(int i =1;i<=M;++i){
scanf("%d %d",&u, &v);
F.AddEdge(u,v+N,INF);
}
int flow = F.maxFlow_sap(s,t,t+1);
memset(vis,0,sizeof(vis));
dfs(s);
vector<int> res;
for(int i=F.head[s];~i;i=F.edges[i].next){
int u = s;
int v = F.edges[i].to;
if(vis[u] && !vis[v]){
res.push_back(v);
}
}
for(int i=F.head[t];~i;i=F.edges[i].next){
int u = t;
int v = F.edges[i].to;
if(vis[v] && !vis[u]){
res.push_back(v);
}
}
int sz = res.size();
printf("%d\n%d\n",flow,sz);
for(int i=0;i<sz;++i){
if(res[i]<=N){
printf("%d -",res[i]);
}
else{
printf("%d +",res[i]-N);
}
printf("\n");
}
}
return 0;
}
为了更好的明天