2018.9 ECNU ICPC/CCPC Trial Round #2 Query On Tree (树链剖分+线段树维护)
一棵树,支持两种操作:给一条路径上的节点加上一个等差数列;求两点路径上节点和.
很明显,熟练剖分.用线段树维护链上的区间和,每个节点中记录等差数列的首项,公差和区间和.因为两个等差数列叠加之后还是等差数列,所以将首项与公差视作懒惰标记.
因为在寻找LCA的过程中,u往上跳的时候,其实是要维护递减的等差数列(dfs序是u->topu递减,而数列是u->topu递增);v往上跳的时候,是递增的.计算出u->v上路径的长度,就可以根据等差数列通项公式求出an.
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define lson rt<<1
#define rson rt<<1|1
#define Lson l,m,lson
#define Rson m+1,r,rson
using namespace std;
typedef long long LL;
const int mod = 1e9+7;
const int maxn =5e4+5;
struct Edge{
int to,next;
}E[maxn<<1];
int n,head[maxn],tot;
int cnt,idx,siz[maxn],fa[maxn],son[maxn],dep[maxn],top[maxn],id[maxn],rnk[maxn];
int a[maxn];
struct Node{
LL a1,d,sum; //区间首项,公差,区间和
}tree[maxn<<2];
LL qpow(LL a,LL N)
{
LL res=1;
while(N){
if(N&1) res = res*a %mod;
a = a*a%mod;
N>>=1;
}
return res;
}
const LL rev2 = qpow(2,mod-2); //2逆元
void init()
{
cnt=idx=tot=0;
memset(head,-1,sizeof(head));
dep[1]=0,fa[1]=1,siz[0]=0;
memset(son,0,sizeof(son));
}
void AddEdge(int u,int v)
{
E[tot] = (Edge){v,head[u]};
head[u]=tot++;
}
void dfs1(int u)
{
siz[u]=1;
for(int i=head[u];~i;i=E[i].next){
int v=E[i].to;
if(v!=fa[u]){
fa[v]=u;
dep[v]=dep[u]+1;
dfs1(v);
siz[u]+=siz[v];
if(siz[son[u]]<siz[v]) son[u]=v;
}
}
}
void dfs2(int u,int topu)
{
top[u]= topu;
id[u] = ++idx;
rnk[idx] = u;
if(!son[u]) return;
dfs2(son[u],top[u]);
for(int i=head[u];~i;i=E[i].next){
int v=E[i].to;
if(v!=fa[u]&&v!=son[u]) dfs2(v,v);
}
}
//------------------------------------线段树
void pushup(int rt){
tree[rt].sum = (tree[lson].sum + tree[rson].sum)%mod;
}
void pushdown(int l,int r,int rt){
if(tree[rt].a1 !=0 || tree[rt].d !=0){
LL a1 = tree[rt].a1, d = (tree[rt].d+mod)%mod;
int m = (l+r)>>1;
int n1 = m-l+1, n2 = r-m;
LL f1 = a1%mod, f2 = (a1 + n1*d%mod +mod)%mod;
tree[lson].a1 = (tree[lson].a1+f1)%mod;
tree[rson].a1 = (tree[rson].a1+f2)%mod;
tree[lson].d = (tree[lson].d+d+mod)%mod;
tree[rson].d = (tree[rson].d+d+mod)%mod;
tree[lson].sum = (tree[lson].sum+ f1*n1 %mod+
n1*(n1-1)%mod *d %mod*rev2 %mod + mod)%mod;
tree[rson].sum = (tree[rson].sum+ f2*n2 %mod+
n2*(n2-1)%mod *d %mod *rev2 %mod +mod)%mod;
//cout<<(lson)<<":"<<tree[lson].sum<<" "<<(rson)<<":"<<tree[rson].sum<<endl;
tree[rt].a1 = tree[rt].d = 0;
}
}
void build(int l,int r,int rt)
{
tree[rt].a1 = tree[rt].d =0;
if(l==r){
tree[rt].sum = 0;
return;
}
int m = (l+r)>>1;
build(Lson);
build(Rson);
pushup(rt);
}
void update(int L,int R,LL a1,LL v,int l=1,int r=n,int rt=1){
if(L<=l && R>=r){
int nn = r-l+1;
v = (v+mod)%mod;
LL f1 = (a1 + (l-L)*v %mod +mod)%mod; //叠加的等差数列首项
tree[rt].a1 = (tree[rt].a1+f1)%mod;
tree[rt].d = (tree[rt].d+v+mod)%mod; //公差
tree[rt].sum = (tree[rt].sum+f1*nn %mod +nn*(nn-1)%mod
*v %mod*rev2%mod + mod)%mod;
return;
}
pushdown(l,r,rt);
int m =(l+r)>>1;
if(L<=m) update(L,R,a1,v,Lson); //首项对齐
if(R>m) update(L,R,a1,v,Rson); //首项对齐
pushup(rt);
}
LL query(int L,int R,int l=1,int r=n,int rt=1){ //区间查询
if(L<=l && R>=r) return tree[rt].sum;
pushdown(l,r,rt);
int m = (l+r)>>1,ans=0;
LL res=0;
if(L<=m) res = (res+query(L,R,Lson)+mod)%mod;
if(R>m) res= (res+query(L,R,Rson)+mod)%mod;
pushup(rt);
return res;
}
//----------------------------------树剖
void debug()
{
for(int i=1;i<=n;++i) printf("%lld ",query(id[i],id[i]));
cout<<endl;
}
int getdist(int u,int v)
{ //计算两点之间的路径长度
int ans=0;
while(top[u]!=top[v]){
if(dep[top[u]]<dep[top[v]]) swap(u,v);
ans += id[u] - id[top[u]]+1;
u = fa[top[u]];
}
if(dep[u]>dep[v]) swap(u,v);
ans += id[v]-id[u];
return ans;
}
void UPDATE(int u,int v,LL a1, LL w)
{
int nn = getdist(u,v);
LL an = (a1 + nn*w)%mod;
//cout<<nn<<" "<<a1<<" "<<an<<endl;
while(top[u]!=top[v]){
if(dep[top[u]]<dep[top[v]]){
int cnt = id[v] - id[top[v]]+1;
update(id[top[v]],id[v], (an-(cnt-1)*w %mod+mod)%mod,w); //递增
an = (an - (cnt*w%mod) +mod)%mod;
v = fa[top[v]];
}
else{
int cnt = id[u] - id[top[u]] + 1;
update(id[top[u]],id[u],(a1+(cnt-1)*w)%mod,(mod-w)%mod); //反向
a1 = (a1+ cnt*w %mod)%mod;
u = fa[top[u]];
}
//cout<<a1<<" "<<an<<endl;
}
if(dep[u]<dep[v]){
int cnt = id[v] - id[u]+1;
update(id[u],id[v],an-(cnt-1)*w,w); //递增
}
else{
int cnt = id[u] - id[v] +1;
update(id[v],id[u],a1+(cnt-1)*w,-w); //反向
}
}
LL Qsum(int u,int v)
{
int ans=0;
while(top[u]!=top[v]){
if(dep[top[u]]<dep[top[v]]) swap(u,v);
ans = (ans+query(id[top[u]],id[u])) %mod;
u = fa[top[u]];
}
if(dep[u]>dep[v]) swap(u,v);
ans = (ans + query(id[u],id[v]))%mod;
return ans;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int m,q,u,v,op;
while(scanf("%d%d",&n,&q)==2){
init();
for(int i=1;i<n;++i){
scanf("%d%d",&u,&v); u++,v++;
AddEdge(u,v);
AddEdge(v,u);
}
dfs1(1);
dfs2(1,1);
build(1,n,1);
LL w;
while(q--){
scanf("%d",&op);
if(op==1){
scanf("%d %d %lld",&u,&v,&w); u++, v++;
if(w==0) continue;
UPDATE(u,v,w,w);
//debug();
}
else{
scanf("%d %d",&u,&v); u++, v++;
printf("%lld\n",Qsum(u,v));
}
}
}
return 0;
}
为了更好的明天