BZOJ 2005 能量采集 (莫比乌斯反演)
题意:一个NM的矩形方格,对每个整点(i,j),每次的消耗为点(0,0)到(i,j)距离上整点(不包括(i,j))个数2+1。
分析:设\(N\le M\),不满足交换即可。则所有点被扫到的次数会在有1-N共N种可能。先假设每个点只要被扫到,那贡献就是2。
枚举点被扫到的次数p,设对于被扫到p次的点,对最终结果的贡献为\(f(p)\),有
\[f(p) = 2*p*\sum_{i=1}^{\lfloor \frac{N}{p} \rfloor} \sum_{j=1}^{\lfloor \frac{M}{p} \rfloor} [gcd(i,j)=1]
\]
\([gcd(i,j)=1]指gcd(i,j)=1的对数\)
则最终答案为
\[ans = \sum_{p=1}^{N}f(p)-N*M
\]
求\(f(p)\)的方法就是最基础的莫比乌斯反演
最后减去\(N*M\)是因为每个点如果是第一个被扫到,则对结果贡献只有1。
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn=2e5+5;
bool vis[maxn];
int prime[maxn],mu[maxn];
int sum[maxn];
void init(){
memset(vis,false,sizeof(vis));
mu[1] = 1;
prime[0] = 0;
int cnt=0;
for(int i=2;i<maxn;++i){
if(!vis[i]){
mu[i] = -1;
sum[i] = 1;
prime[++cnt] = i;
}
for(int j=1;j<=cnt;++j){
if(i*prime[j] >= maxn) break;
vis[i*prime[j]] = true;
if(i % prime[j]){
mu[i*prime[j]] = -mu[i];
}
else{
mu[i*prime[j]] = 0;
break;
}
}
}
for(int i=1;i<maxn;++i) sum[i] = sum[i-1] + mu[i];
}
void prepare(){
int i,j,cnt=0;
mu[1]=sum[1]=1;
for(i=2;i<maxn;i++){
if(!vis[i])
prime[++cnt]=i,mu[i]=-1;
for(j=1;prime[j]*i<maxn;j++){
vis[prime[j]*i]=1;
if(i%prime[j]==0){
mu[prime[j]*i]=0;
break;
}
mu[prime[j]*i]=-mu[i];
}
sum[i]=sum[i-1]+mu[i]; //前缀和
}
}
LL gao(LL n,LL m,LL p) //枚举p
{
LL ans = 0;
LL a = n/p,b = m/p;
for(int i=1,j;i<=a;i=j+1){
j = min(a/(a/i),b/(b/i));
ans += (sum[j]-sum[i-1])*(a/i)*(b/i);
}
return ans;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
init();
LL a,b,c,d,k,N,M;
while(~scanf("%lld %lld ",&N, &M)){
LL res=0;
if(N>M) swap(N,M);
for(int i=1;i<=N;++i){
res += 2*i*gao(N,M,i);
}
printf("%lld\n",res-N*M);
}
return 0;
}
为了更好的明天