面试系列35 如何设计一个高并发系统

其实所谓的高并发,如果你要理解这个问题呢,其实就得从高并发的根源出发,为啥会有高并发?为啥高并发就很牛逼?

 

我说的浅显一点,很简单,就是因为刚开始系统都是连接数据库的,但是要知道数据库支撑到每秒并发两三千的时候,基本就快完了。所以才有说,很多公司,刚开始干的时候,技术比较low,结果业务发展太快,有的时候系统扛不住压力就挂了。

 

当然会挂了,凭什么不挂?你数据库如果瞬间承载每秒5000,8000,甚至上万的并发,一定会宕机,因为比如mysql就压根儿扛不住这么高的并发量。

 

所以为啥高并发牛逼?就是因为现在用互联网的人越来越多,很多app、网站、系统承载的都是高并发请求,可能高峰期每秒并发量几千,很正常的。如果是什么双十一了之类的,每秒并发几万几十万都有可能。

 

那么如此之高的并发量,加上原本就如此之复杂的业务,咋玩儿?真正厉害的,一定是在复杂业务系统里玩儿过高并发架构的人,但是你没有,那么我给你说一下你该怎么回答这个问题:

 

(1)系统拆分,将一个系统拆分为多个子系统,用dubbo来搞。然后每个系统连一个数据库,这样本来就一个库,现在多个数据库,不也可以抗高并发么。

 

(2)缓存,必须得用缓存。大部分的高并发场景,都是读多写少,那你完全可以在数据库和缓存里都写一份,然后读的时候大量走缓存不就得了。毕竟人家redis轻轻松松单机几万的并发啊。没问题的。所以你可以考虑考虑你的项目里,那些承载主要请求的读场景,怎么用缓存来抗高并发。

 

(3)MQ,必须得用MQ。可能你还是会出现高并发写的场景,比如说一个业务操作里要频繁搞数据库几十次,增删改增删改,疯了。那高并发绝对搞挂你的系统,你要是用redis来承载写那肯定不行,人家是缓存,数据随时就被LRU了,数据格式还无比简单,没有事务支持。所以该用mysql还得用mysql啊。那你咋办?用MQ吧,大量的写请求灌入MQ里,排队慢慢玩儿,后边系统消费后慢慢写,控制在mysql承载范围之内。所以你得考虑考虑你的项目里,那些承载复杂写业务逻辑的场景里,如何用MQ来异步写,提升并发性。MQ单机抗几万并发也是ok的,这个之前还特意说过。

 

(4)分库分表,可能到了最后数据库层面还是免不了抗高并发的要求,好吧,那么就将一个数据库拆分为多个库,多个库来抗更高的并发;然后将一个表拆分为多个表,每个表的数据量保持少一点,提高sql跑的性能。

 

(5)读写分离,这个就是说大部分时候数据库可能也是读多写少,没必要所有请求都集中在一个库上吧,可以搞个主从架构,主库写入,从库读取,搞一个读写分离。读流量太多的时候,还可以加更多的从库。

 

(6)Elasticsearch,可以考虑用es。es是分布式的,可以随便扩容,分布式天然就可以支撑高并发,因为动不动就可以扩容加机器来抗更高的并发。那么一些比较简单的查询、统计类的操作,可以考虑用es来承载,还有一些全文搜索类的操作,也可以考虑用es来承载。

 

 

上面的6点,基本就是高并发系统肯定要干的一些事儿,大家可以仔细结合之前讲过的知识考虑一下,到时候你可以系统的把这块阐述一下,然后每个部分要注意哪些问题,之前都讲过了,你都可以阐述阐述,表明你对这块是有点积累的。

 

说句实话,毕竟真正你厉害的一点,不是在于弄明白一些技术,或者大概知道一个高并发系统应该长什么样?其实实际上在真正的复杂的业务系统里,做高并发要远远比我这个图复杂几十倍到上百倍。你需要考虑,哪些需要分库分表,哪些不需要分库分表,单库单表跟分库分表如何join,哪些数据要放到缓存里去啊,放哪些数据再可以抗掉高并发的请求,你需要完成对一个复杂业务系统的分析之后,然后逐步逐步的加入高并发的系统架构的改造,这个过程是务必复杂的,一旦做过一次,一旦做好了,你在这个市场上就会非常的吃香。

 

其实大部分公司,真正看重的,不是说你掌握高并发相关的一些基本的架构知识,架构中的一些技术,RocketMQ、Kafka、Redis、Elasticsearch,高并发这一块,次一等的人才。对一个有几十万行代码的复杂的分布式系统,一步一步架构、设计以及实践过高并发架构的人,这个经验是难能可贵的。

 

我这边其实平时我会发布一些免费的课程,每隔一段时间定期发布一点,主要是尽可能给大家讲一些免费的课程,保证质量, 让大家学到一些东西。

 

我主要还是专注在自己的架构师体系的课程上面,是一年多的时间,非常长,内容极其庞大,我从一开始就带着你从0开始,动手构建一个10万行以上代码量的这么个庞大的系统,针对这种复杂系统的业务场景,里面隐含的各种技术问题和坑,我会通过1年多的时间,一步一步的讲解各种技术和架构,解决真实的大型的系统中的各种问题。

posted @ 2019-07-28 15:53  菩提树下的丁春秋  阅读(358)  评论(0编辑  收藏  举报