数据分析-刷卡数据(转自人月神话)
对于有信用卡的人,我们收到的信用卡账单,往往有最简单的消费明细数据,如下:
消费清单(持有卡人卡号,姓名,消费商家,消费时间,消费金额)
可以看到这个消费明细数据本身是相对简单的,如果不结合其它的数据维度,往往单纯的去做统计分析并不会产生太多的意义。任何数据分析都需要结合对原始数据的维度拓展上,维度拓展后整个数据模型会更加丰富,则可以产生多维度的分析和数据聚合。
从上面的消费详细清单数据,简单来看可以进行如下扩展
人员信息(人员姓名,身份证号,年龄,姓名,职业类型,居住地址,家庭信息)
商家信息(商家名称,商家地址,商家经营类型)
有了人员信息就有第一层拓展,即我们对数据的聚合可以基于人员的属性维度,即我们拿到的消费明细数据,可以按照消费者性别,年龄段,职业类型等进行聚合。对于人员的识别唯一码不是姓名,而是人员的身份证号码,即通过身份证号码我们可以对一人多张信用卡的消费数据进行聚合。
有了商家信息,我们可以根据商家的经营类型对不同类型的消费数据进行聚合。同时可以看到,对于商家详细地址信息本身是无法进行聚合的。那就要考虑在主体对
象的属性中的单个属性本身的层次扩展,即地址信息我们可以进行扩展,即城市-》区-》区域-》消费区域-》商圈-》大商场-》具体地址。
如果地址有了这个扩展,就可以看到最终的消费数据可以做到按消费区域进行聚合,我们可以分析某一个商圈或商场的消费汇总数据,而这个数据本身则是从原始消费明细数据中进行模型扩展出来的。
要做到这个事情可以看到,任何动态的消费明细数据,必须要配合大量的基础主数据,这些基础主数据可能有表格结构也可能是维度结构,这些数据必须要整理出来并关联映射上详细的消费明细数据。这样,最终的消费数据才容易进行多维度的分析,基于维度的聚合。
消费时间本身也是重要的维度,通过时间我们可以根据时间段进行数据汇总,同时时间本身可以按年,按季度,按月逐层展开,也是一种可以层次化展开的结构。同
时还可以注意到时间本身还可以进行消费频度的分析,即某一个时间段里面的刷卡次数数据,根据消费频度可以反推到某一个区域本身在某些时间段的热度信息。
如果仅仅是信用卡的刷卡消费清单数据,我们比较难以定位到具体的商品SKU信息上,如果是一个大型超市,则对于详细的用户消费购买数据,还可以明细到具体的商品上,则商品本身的维度属性展开又是可以进行拓展分析和聚合的内容。
数据本身可能具备相关性,刷卡消费的数据往往可以和其它数据直接发生相关性,比如一个地区本身的大事件,一个区域举办的营销活动,我们从交通部门获取到的某个区域的交通流量数据。这些都可能和最终的消费数据发生某种意义上的相关性。
如果仅仅是从刷卡数据本身,前面谈到可以根据商户定位到商家的经营范围,究竟是餐饮类的还是卖衣服类的。那么根据不同的经营类型可以分别统计刷卡消费数据,然后我们就可以分析,对于餐饮类的消费金额增加的时候服装类的消费是否会增加,即餐饮商家究竟对一个商场的其它用品的销售有无带动作用等?
对于人员同样的道理,可以分析不同年龄段的人员的消费数据之间是否存在一定的相关性?这些相关性究竟存在于哪些类型的商品销售上等。这些分析将方便我们制定更加有效的针对性营销策略。