曦晴嗨皮

导航

 
综合案例分析
现有数据集 department.jsonemployee.json,以部门名称和员工性别为粒度,试计算每个部门分性别平均年龄与平均薪资。 department.json如下:
{"id":1,"name":"Tech Department"}
{"id":2,"name":"Fina Department"}
{"id":3,"name":"HR Department"}
employee.json如下:
{"name":"zhangsan","age":26,"depId":1,"gender":"male","salary":20000}
{"name":"lisi","age":36,"depId":2,"gender":"female","salary":8500}
{"name":"wangwu","age":23,"depId":1,"gender":"male","salary":5000}
{"name":"zhaoliu","age":25,"depId":3,"gender":"male","salary":7000}
{"name":"marry","age":19,"depId":2,"gender":"female","salary":6600}
{"name":"Tom","age":36,"depId":1,"gender":"female","salary":5000}
{"name":"kitty","age":43,"depId":2,"gender":"female","salary":6000}
两份数据我们在演示的时候已经创建并上传至 hdfs 文件系统,用户在这里需要请自行创建。
执行命令:
root@foo2 cloudera]# cd /root/device-report/
[root@foo2 device-report]# ls
b.txt  test.sql
[root@foo2 device-report]# vim department.json
[root@foo2 device-report]# vim employee.json
[root@foo2 device-report]# ls
b.txt  department.json  employee.json  test.sql
[root@foo2 device-report]# chown hdfs:hdfs department.json
[root@foo2 device-report]# chown hdfs:hdfs employee.json
[root@foo2 device-report]# ls
b.txt  department.json  employee.json  test.sql
[root@foo2 device-report]# ll
总用量 16
-rw-r--r-- 1 hdfs hdfs  22 8月  14 10:45 b.txt
-rw-r--r-- 1 hdfs hdfs 100 8月  17 16:50 department.json
-rw-r--r-- 1 hdfs hdfs 474 8月  17 16:53 employee.json [root@foo2 device-report]# su hdfs
[hdfs@foo2 device-report]$ clear
[hdfs@foo2 device-report]$ ls
b.txt  test.sql
[hdfs@foo2 device-report]$ cd /var/lib/hadoop-h
hadoop-hdfs/   hadoop-httpfs/
[hdfs@foo2 device-report]$ cd /var/lib/hadoop-hdfs/device-report/
[hdfs@foo2 device-report]$ ls
b.txt  department.json  employee.json  person.json  test.sql
[hdfs@foo2 device-report]$ hadoop fs -put department.json /testdata
[hdfs@foo2 device-report]$ hadoop fs -put employee.json /testdata
[hdfs@foo2 device-report]$ hadoop fs -ls /testdata
Found 3 items
-rw-r--r--   2 hdfs supergroup        100 2018-08-17 16:54 /testdata/department.json
-rw-r--r--   2 hdfs supergroup        474 2018-08-17 16:55 /testdata/employee.json
-rw-r--r--   2 hdfs supergroup         71 2018-08-17 16:39 /testdata/person.json
查看内容
[hdfs@foo2 device-report]$ hadoop fs -cat hdfs://192.168.0.106:8020/testdata/department.json
{"id":1,"name":"Tech Department"}
{"id":2,"name":"Fina Department"}
{"id":3,"name":"HR Department"}
[hdfs@foo2 device-report]$ hadoop fs -cat hdfs://192.168.0.106:8020/testdata/employee.json
{"name":"zhangsan","age":26,"depId":1,"gender":"male","salary":20000}
{"name":"lisi","age":36,"depId":2,"gender":"female","salary":8500}
{"name":"wangwu","age":23,"depId":1,"gender":"male","salary":5000}
{"name":"zhaoliu","age":25,"depId":3,"gender":"male","salary":7000}
{"name":"marry","age":19,"depId":2,"gender":"female","salary":6600}
{"name":"Tom","age":36,"depId":1,"gender":"female","salary":5000}
{"name":"kitty","age":43,"depId":2,"gender":"female","salary":6000}
 
-rw-r--r-- 1 hdfs hdfs 237 8月  14 16:49 test.sql
[root@foo2 device-report]# mv department.json /var/lib/hadoop-hdfs/device-report/
[root@foo2 device-report]# mv employee.json /var/lib/hadoop-hdfs/device-report/
 
1). 加载数据
scala> val emp = spark.read.json("hdfs://192.168.0.106:8020/testdata/employee.json")
emp: org.apache.spark.sql.DataFrame = [age: bigint, depId: bigint ... 3 more fields]
 
scala> val dep = spark.read.json("hdfs://192.168.0.106:8020/testdata/department.json")
dep: org.apache.spark.sql.DataFrame = [id: bigint, name: string]
变成视图:
scala> emp.createOrReplaceTempView("employee")
 
scala> dep.createOrReplaceTempView("department")
 
2). 用算子操作
      # 注意:两个表的字段的连接条件,需要使用三个等号
     emp.join(dep,$"id" === $"depId").groupBy(dep("name"),emp("gender")).agg(avg(emp("salary")),avg(emp("age"))).show()
    结果:
      +---------------+------+-----------------+------------------+                   
|           name|gender|      avg(salary)|          avg(age)|
+---------------+------+-----------------+------------------+
|Tech Department|  male|          12500.0|              24.5|
|Fina Department|female|7033.333333333333|32.666666666666664|
|Tech Department|female|           5000.0|              36.0|
|  HR Department|  male|           7000.0|              25.0|
+---------------+------+-----------------+------------------+
3). 用SQL操作
     scala> spark.sql("select department.name,avg(employee.salary),avg(employee.age) from employee left join department  on employee.depId=department.id group by department.name,employee.gender").show()
     结果:
+-----------------+---------------------+----------------------+                         
|                   name|                 avg(salary)|                      avg(age)|
+-----------------+---------------------+----------------------+
|Tech Department |                    12500.0|                            24.5|
|Fina Department  |7033.333333333333|32.666666666666664|
|Tech Department |                      5000.0|                            36.0|
|  HR Department  |                      7000.0|                            25.0|
+-----------------+---------------------+----------------------+
 
2、3结果都是一样一样的。
 
posted on 2018-09-17 15:13  曦晴嗨皮  阅读(246)  评论(0编辑  收藏  举报