MathProblem 72 A jar and an amoeba problem
A jar begins with one amoeba. Every minute, every amoeba turns into 0, 1, 2, or 3 amoebae with probability 25% for each case ( dies, does nothing, splits into 2, or splits into 3). What is the probability that the amoeba population eventually dies out?
Solution
假设这个概率为 \(p\). 那么对于 \(n\) 个,它们都是相互独立的,所以这种情况下为 \(p^n\).
因此:
\[p=\frac{1}{4}(1+p+p^2+p^3)
\]
得到:
\[p^3+p^2-3p+1=0\Rightarrow (p-1)(p^2+2p-1)=0
\]
求解即可