MathProblem 57 Chessboard problem #1
Given an \(2^n\) by \(2^n\) chessboard, with one corner removed, show that you can cover it completely without overlapping or going off the board using only triominoes of the shape below.
Rotations are allowed.
Solution
将 \(2^n\times 2^n\) 的棋盘一个顶角去掉, 用一个\(2\times 2\) 也去掉一角的图形去覆盖,问是否都可以无重叠地覆盖?
从最简单的 \(2\times 2\) 开始,显然可以;考虑 \(4\times 4\),方法就是在最中间的那一部分用该图形覆盖,且缺角的方向保持一致,如下图所示:
那么对于 \(8\times 8\) 也是类似的: