xinyu04

导航

MathProblem 57 Chessboard problem #1

Given an \(2^n\) by \(2^n\) chessboard, with one corner removed, show that you can cover it completely without overlapping or going off the board using only triominoes of the shape below.

Rotations are allowed.

Solution

\(2^n\times 2^n\) 的棋盘一个顶角去掉, 用一个\(2\times 2\) 也去掉一角的图形去覆盖,问是否都可以无重叠地覆盖?

从最简单的 \(2\times 2\) 开始,显然可以;考虑 \(4\times 4\),方法就是在最中间的那一部分用该图形覆盖,且缺角的方向保持一致,如下图所示:
image

那么对于 \(8\times 8\) 也是类似的:
image

posted on 2022-08-28 21:00  Blackzxy  阅读(12)  评论(0编辑  收藏  举报