Theorem 2.7:
f:Rd→R be convex and differentiable with a global minimum x∗; Suppose f is smooth with parameter L. Choosing stepsize: γ=1L, gradients descent yields:
f(xT)−f(x∗)≤L2T||x0−x∗||2(1)
Proof:
f is differentiable and smooth, according to Lemma 2.6, we can get:
f(xt+1)−f(xt)≤−12L||gt||2(2)
Therefore:
12L||gt||2≤f(xt)−f(xt+1)(3)
Now we sum up:
12LT−1∑t=0||gt||2≤T−1∑t=0[f(xt)−f(xt+1)]=f(x0)−f(xT)(4)(5)
γ=1/L, therefore from previous analysis:
T−1∑t=0[f(xt)−f(x∗)]≤γ2T−1∑t=0||gt||2+12γ||x0−x∗||2(6)
Combine (5) and (6):
T−1∑t=0[f(xt)−f(x∗)]≤γ2T−1∑t=0||gt||2+12γ||x0−x∗||2≤f(x0)−f(xT)+12γ||x0−x∗||2(7)(8)
Hence:
T∑t=1[f(xt)−f(x∗)]≤12γ||x0−x∗||2=L2||x0−x∗||2(9)(10)
As the result:
T⋅(f(xT)−f(x∗))≤T∑t=1[f(xt)−f(x∗)]=L2||x0−x∗||2(11)(12)
⇒f(xT)−f(x∗)≤L2T||x0−x∗||2(13)
1. Smooth and strongly convex function:O(log(1/ϵ)) steps
First-order method: only use the gradient information to minimize f.
Definition 2.9:
Strongly convex function:
f(y)≥f(x)+∇f(x)T(y−x)+L2||x−y||2(14)
Lemma 2.10:
if f is strongly convex with parameter μ>0, then f is strictly convex and has a unique global minimum.
Assume that f is stringly convex with μ, from vanilla analysis:
gt(xt−x∗)=∇f(xt)T(xt−x∗)≥f(xt)−f(x∗)+μ2||xt−x∗||2(15)(16)
Hence:
f(xt)−f(x∗)≤12γ[γ2||gt||2+||xt−x∗||2−||xt+1−x∗||2]−μ2||xt−x∗||2(17)
Rewrite it as:
||xt+1−x∗||2≤2γ[f(x∗)−f(xt)]+γ2||gt||2+(1−μγ)||xt−x∗||2(18)
Theorem 2.12:
f:Rd→R be convex and differnentiable. Suppose f is smooth with L, and strongly convex with μ. Choosing stepsize:
γ=1/L(19)
Gradient descent with arbitary x0 satisfies the following two properties:
(i)
||xt+1−x∗||2≤(1−μL)||xt−x∗||2(20)
Proof:
By smooth, we know:
f(x∗)−f(xt)≤f(xt+1)−f(xt)≤−12L||gt||2(21)
Combine (18), we get
||xt+1−x∗||2≤−γ2||gt||2+γ2||gt||2+(1−μγ)||xt−x∗||2≤(1−μL)||xt−x∗||2(22)(23)
(ii)
f(xT)−f(x∗)≤L2(1−μL)T||x0−x∗||2(24)
Proof:
From smooth:
f(xt)≤f(x∗)+L2||xt−x∗||2(25)
⇒f(xT)−f(x∗)≤L2||xT−x∗||2≤...≤L2(1−μL)T||x0−x∗||2(26)(27)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· C#/.NET/.NET Core技术前沿周刊 | 第 29 期(2025年3.1-3.9)
· 从HTTP原因短语缺失研究HTTP/2和HTTP/3的设计差异