volatile与synchronized的区别

一、多线程编程中的三个核心概念

1、原子性

这一点,跟数据库事务的原子性概念差不多,即一个操作(有可能包含有多个子操作)要么全部执行(生效),要么全部都不执行(都不生效)。

关于原子性,一个非常经典的例子就是银行转账问题:

A想要从自己的帐户中转1000块钱到B的帐户里。那个从A开始转帐,要做如下操作:

    1. 从A的帐户中减去1000块钱。如果A的帐户原来有3000块钱,现在就变成2000块钱了。

    2. 在B的帐户里加1000块钱。如果B的帐户如果原来有2000块钱,现在则变成3000块钱了。

如果在A的帐户已经减去了1000块钱的时候,忽然发生了意外,比如停电什么的,导致转帐意外终止了,而此时B的帐户里还没有增加1000块钱。也就是A的帐户减了1000块,B的帐户的原来的状态。

我们把这种要么一起成功(A帐户成功减少1000,同时B帐户成功增加1000),要么一起失败(A帐户回到原来状态,B帐户也回到原来状态)的操作叫原子性操作。

如果把一个原子性看作是一个段程序,它要么完整的被执行,要么完全不执行。这种特性就叫原子性

2、可见性

可见性是指,当多个线程并发访问共享变量时,一个线程对共享变量的修改,其它线程能够立即看到。Java线程通信是通过共享内存的方式进行通信的,而我们又知道,为了加快执行的速度,线程一般是不会直接操作内存的,而是操作缓存。

java线程内存模型:

3、顺序性

顺序性指的是,程序执行的顺序按照代码的先后顺序执行。

以下面这段代码为例:

boolean started = false; // 语句1
long counter = 0L; // 语句2
counter = 1; // 语句3
started = true; // 语句4

从代码顺序上看,上面四条语句应该依次执行,但实际上JVM真正在执行这段代码时,并不保证它们一定完全按照此顺序执行。

处理器为了提高程序整体的执行效率,可能会对代码进行优化,其中的一项优化方式就是调整代码顺序,按照更高效的顺序执行代码。

二、Java如何解决多线程并发问题

 1 、Java如何保证原子性

   1.1、锁和同步

常用的保证Java操作原子性的工具是锁和同步方法(或者同步代码块)。使用锁,可以保证同一时间只有一个线程能拿到锁,也就保证了同一时间只有一个线程能执行申请锁和释放锁之间的代码。

  •  Lock是一个接口,而Synchronized是关键字。
  •  Synchronized会自动释放锁,而Lock必须手动释放锁。
  •  Lock可以让等待锁的线程响应中断,而Synchronized不会,线程会一直等待下去。
  •  通过Lock可以知道线程有没有拿到锁,而Synchronized不能。
  •  Lock能提高多个线程读操作的效率。
  •  Synchronized能锁住类、方法和代码块,而Lock是块范围内的。
 /**
  * synchronized:在需要同步的对象中加入此控制,synchronized可以加在方法上,也可以加在特定代码块中,括号中表示需要锁的对象。
  * lock:需要显示指定起始位置和终止位置。一般使用ReentrantLock类做为锁,多个线程中必须要使用一个ReentrantLock类
  * 作为对象才能保证锁的生效。
  * 且在加锁和解锁处需要通过lock()和unlock()显示指出。所以一般会在finally块中写unlock()以防死锁。
  *
  * synchronized原始采用的是CPU悲观锁机制,即线程获得的是独占锁。独占锁意味着其他线程只能依靠阻塞来等待线程释放锁。
  * 而在CPU转换线程阻塞时会引起线程上下文切换,当有很多线程竞争锁的时候,会引起CPU频繁的上下文切换导致效率很低
  * Lock用的是乐观锁方式。所谓乐观锁就是,每次不加锁而是假设没有冲突而去完成某项操作,
  * 如果因为冲突失败就重试,直到成功为止。
  * 乐观锁实现的机制就是CAS操作(Compare and Swap)。我们可以进一步研究ReentrantLock的源代码,
  * 会发现其中比较重要的获得锁的一个方法是compareAndSetState。这里其实就是调用的CPU提供的特殊指令
  */
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class LockTest {
    private Lock lock = new ReentrantLock();

    /*
     * 使用完毕释放后其他线程才能获取锁
     */
    public void lockTest(Thread thread) {

        lock.lock();//获取锁
        try {
            System.out.println("线程" + thread.getName() + "获取当前锁"); //打印当前锁的名称
            Thread.sleep(2000);//为看出执行效果,是线程此处休眠2秒
        } catch (Exception e) {
            System.out.println("线程" + thread.getName() + "发生了异常释放锁");
        } finally {
            System.out.println("线程" + thread.getName() + "执行完毕释放锁");
            lock.unlock(); //释放锁
        }
    }

    public static void main(String[] args) {
        LockTest lockTest = new LockTest();
        //声明一个线程 “线程一”
        Thread thread1 = new Thread(new Runnable() {
            @Override
            public void run() {
                lockTest.lockTest(Thread.currentThread());
            }
        }, "thread1");
        //声明一个线程 “线程二”
        Thread thread2 = new Thread(new Runnable() {

            @Override
            public void run() {
                lockTest.lockTest(Thread.currentThread());
            }
        }, "thread2");
        // 启动2个线程
        thread2.start();
        thread1.start();

    }
}

执行结果:

 

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class LockTest {
    private Lock lock = new ReentrantLock();
    /*
     * 尝试获取锁 tryLock() 它表示用来尝试获取锁,如果获取成功,则返回true,如果获取失败(即锁已被其他线程获取),则返回false
     */
    public void tryLockTest(Thread thread) {

        if(lock.tryLock()) { //尝试获取锁
            try {
                System.out.println("线程"+thread.getName() + "获取当前锁"); //打印当前锁的名称
                Thread.sleep(2000);//为看出执行效果,是线程此处休眠2秒
            } catch (Exception e) {
                System.out.println("线程"+thread.getName() + "发生了异常释放锁");
            }finally {
                System.out.println("线程"+thread.getName() + "执行完毕释放锁");
                lock.unlock(); //释放锁
            }
        }else{
            System.out.println("我是线程"+Thread.currentThread().getName()+"当前锁被别人占用,我无法获取");
        }
    }
    public static void main(String[] args) {

        LockTest lockTest = new LockTest();
        //声明一个线程 “线程一”
        Thread thread1 = new Thread(new Runnable() {
            @Override
            public void run() {
                lockTest.tryLockTest(Thread.currentThread());
            }
        }, "thread1");
        //声明一个线程 “线程二”
        Thread thread2 = new Thread(new Runnable() {

            @Override
            public void run() {
                lockTest.tryLockTest(Thread.currentThread());
            }
        }, "thread2");
        // 启动2个线程
        thread2.start();
        thread1.start();
    }
}

执行结果:

与锁类似的是同步方法或者同步代码块。使用非静态同步方法时,锁住的是当前实例;使用静态同步方法时,锁住的是该类的Class对象;使用静态代码块时,锁住的是synchronized关键字后面括号内的对象。下面是同步代码块示例

public void testLock () {
  synchronized (anyObject){
    int j = i;
    i = j + 1;
  }
}

无论使用锁还是synchronized,本质都是一样,通过锁来实现资源的排它性,从而实际目标代码段同一时间只会被一个线程执行,进而保证了目标代码段的原子性。这是一种以牺牲性能为代价的方法。

1.2、CAS(compare and swap)

基础类型变量自增(i++)是一种常被新手误以为是原子操作而实际不是的操作。Java中提供了对应的原子操作类来实现该操作,并保证原子性,其本质是利用了CPU级别的CAS指令。由于是CPU级别的指令,其开销比需要操作系统参与的锁的开销小。AtomicInteger使用方法如下。

AtomicInteger atomicInteger = new AtomicInteger();
for(int b = 0; b < numThreads; b++) {
  new Thread(() -> {
    for(int a = 0; a < iteration; a++) {
      atomicInteger.incrementAndGet();
    }
  }).start();
}

2、Java如何保证可见性

Java提供了volatile关键字来保证可见性。当使用volatile修饰某个变量时,它会保证对该变量的修改会立即被更新到内存中,并且将其它缓存中对该变量的缓存设置成无效,因此其它线程需要读取该值时必须从主内存中读取,从而得到最新的值。

3、Java如何保证顺序性

上文讲过编译器和处理器对指令进行重新排序时,会保证重新排序后的执行结果和代码顺序执行的结果一致,所以重新排序过程并不会影响单线程程序的执行,却可能影响多线程程序并发执行的正确性。

Java中可通过volatile在一定程序上保证顺序性,另外还可以通过synchronized和锁来保证顺序性。

synchronized和锁保证顺序性的原理和保证原子性一样,都是通过保证同一时间只会有一个线程执行目标代码段来实现的。

除了从应用层面保证目标代码段执行的顺序性外,JVM还通过被称为happens-before原则隐式地保证顺序性。两个操作的执行顺序只要可以通过happens-before推导出来,则JVM会保证其顺序性,反之JVM对其顺序性不作任何保证,可对其进行任意必要的重新排序以获取高效率。

三、happens-before原则(先行发生原则)

  • 传递规则:如果操作1在操作2前面,而操作2在操作3前面,则操作1肯定会在操作3前发生。该规则说明了happens-before原则具有传递性
  • 锁定规则:一个unlock操作肯定会在后面对同一个锁的lock操作前发生。这个很好理解,锁只有被释放了才会被再次获取
  • volatile变量规则:对一个被volatile修饰的写操作先发生于后面对该变量的读操作
  • 程序次序规则:一个线程内,按照代码顺序执行
  • 线程启动规则:Thread对象的start()方法先发生于此线程的其它动作
  • 线程终结原则:线程的终止检测后发生于线程中其它的所有操作
  • 线程中断规则: 对线程interrupt()方法的调用先发生于对该中断异常的获取
  • 对象终结规则:一个对象构造先于它的finalize发生

四、volatile适用场景

volatile适用于不需要保证原子性,但却需要保证可见性的场景。一种典型的使用场景是用它修饰用于停止线程的状态标记。如下所示

public class RunThread extends Thread {

    private boolean isRunning = true;

    public boolean isRunning() {
        return isRunning;
    }

    public void setRunning(boolean isRunning) {
        this.isRunning = isRunning;
    }

    @Override
    public void run() {
        System.out.println("进入到run方法中了");
        while (isRunning == true) {
        }
        System.out.println("线程执行完成了");
    }
}
public class Run {
    public static void main(String[] args) {
        try {
            RunThread thread = new RunThread();
            thread.start();
            Thread.sleep(1000);
            thread.setRunning(false);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

main线程 将启动的线程RunThread中的共享变量设置为false,从而想让RunThrea的while循环结束。实际情况是RunThread线程并不会终止!从而出现了死循环!!

现在有两个线程,一个是main线程,另一个是RunThread。它们都试图修改 第三行的 isRunning变量。按照JVM内存模型,main线程将isRunning读取到本地线程内存空间,修改后,再刷新回主内存。

而在JVM 设置成 -server模式运行程序时,线程会一直在私有堆栈中读取isRunning变量。因此,RunThread线程无法读到main线程改变的isRunning变量

从而出现了死循环,导致RunThread无法终止。这种情形,在《Effective JAVA》中,将之称为“活性失败”

解决方法,在RunThread类中用 volatile 关键字修饰。

private volatile  boolean isRunning = true;

这里,它强制线程从主内存中取 volatile修饰的变量。

线程安全十万个为什么

问:平时项目中使用锁和synchronized比较多,而很少使用volatile,难道就没有保证可见性?
答:锁和synchronized即可以保证原子性,也可以保证可见性。都是通过保证同一时间只有一个线程执行目标代码段来实现的。
问:锁和synchronized为何能保证可见性?
答:根据JDK 7的Java doc中对concurrent包的说明,一个线程的写结果保证对另外线程的读操作可见,只要该写操作可以由happen-before原则推断出在读操作之前发生。

The results of a write by one thread are guaranteed to be visible to a read by another thread only if the write operation happens-before the read operation. The synchronized and volatile constructs, as well as the Thread.start() and Thread.join() methods, can form happens-before relationships.

问:既然锁和synchronized即可保证原子性也可保证可见性,为何还需要volatile?
答:synchronized和锁需要通过操作系统来仲裁谁获得锁,开销比较高,而volatile开销小很多。因此在只需要保证可见性的条件下,使用volatile的性能要比使用锁和synchronized高得多。

问:既然锁和synchronized可以保证原子性,为什么还需要AtomicInteger这种的类来保证原子操作?
答:锁和synchronized需要通过操作系统来仲裁谁获得锁,开销比较高,而AtomicInteger是通过CPU级的CAS操作来保证原子性,开销比较小。所以使用AtomicInteger的目的还是为了提高性能。

问:还有没有别的办法保证线程安全
答:有。尽可能避免引起非线程安全的条件——共享变量。如果能从设计上避免共享变量的使用,即可避免非线程安全的发生,也就无须通过锁或者synchronized以及volatile解决原子性、可见性和顺序性的问题。

问:synchronized即可修饰非静态方式,也可修饰静态方法,还可修饰代码块,有何区别
答:synchronized修饰非静态同步方法时,锁住的是当前实例;synchronized修饰静态同步方法时,锁住的是该类的Class对象;synchronized修饰静态代码块时,锁住的是synchronized关键字后面括号内的对象。

参考:

 Java进阶(二)当我们说线程安全时,到底在说什么?

 同步锁Synchronized与Lock的区别?

posted @ 2019-11-26 02:36  骑猪上高速_D  阅读(169)  评论(0编辑  收藏  举报