代码改变世界

grid search 超参数寻优

2017-09-05 13:39  xplorerthik  阅读(1433)  评论(0编辑  收藏  举报

http://scikit-learn.org/stable/modules/grid_search.html

1. 超参数寻优方法 gridsearchCV 和  RandomizedSearchCV

2. 参数寻优的技巧进阶

   2.1. Specifying an objective metric

        By default, parameter search uses the score function of the estimator to evaluate a parameter setting. These are thesklearn.metrics.accuracy_score for classification and sklearn.metrics.r2_score for regression.

  2.2 Specifying multiple metrics for evaluation

      Multimetric scoring can either be specified as a list of strings of predefined scores names or a dict mapping the scorer name to the scorer function and/or the predefined scorer name(s).

       http://scikit-learn.org/stable/modules/model_evaluation.html#multimetric-scoring

  2.3 Composite estimators and parameter spaces  。pipeline 方法

        http://scikit-learn.org/stable/modules/pipeline.html#pipeline

      

>>> from sklearn.pipeline import Pipeline
>>> from sklearn.svm import SVC
>>> from sklearn.decomposition import PCA
>>> estimators = [('reduce_dim', PCA()), ('clf', SVC())]
>>> pipe = Pipeline(estimators)
>>> pipe  # check pipe
         Pipeline(memory=None,
         steps=[('reduce_dim', PCA(copy=True,...)),
                ('clf', SVC(C=1.0,...))])

>>> from sklearn.pipeline import make_pipeline >>> from sklearn.naive_bayes import MultinomialNB >>> from sklearn.preprocessing import Binarizer >>> make_pipeline(Binarizer(), MultinomialNB()) Pipeline(memory=None, steps=[('binarizer', Binarizer(copy=True, threshold=0.0)), ('multinomialnb', MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True))])
>>> pipe.set_params(clf__C=10)  # 给clf 设定参数
>>> from sklearn.model_selection import GridSearchCV
>>> param_grid = dict(reduce_dim__n_components=[2, 5, 10],
...                   clf__C=[0.1, 10, 100])
>>> grid_search = GridSearchCV(pipe, param_grid=param_grid)

#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 5 10:22:07 2017

@author: xinpingbao
"""

import numpy as np
from sklearn import datasets
from sklearn.linear_model import Ridge
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import make_scorer

# load the diabetes datasets
dataset = datasets.load_diabetes()

X = dataset.data
y = dataset.target

# prepare a range of alpha values to test
alphas = np.array([1,0.1,0.01,0.001,0.0001,0])
# create and fit a ridge regression model, testing each alpha
model = Ridge()
grid = GridSearchCV(estimator=model, param_grid=dict(alpha=alphas)) # defaulting: sklearn.metrics.r2_score
# grid = GridSearchCV(estimator=model, param_grid=dict(alpha=alphas), scoring = 'metrics.mean_squared_error') # defaulting: sklearn.metrics.r2_score
grid.fit(X, y)

print(grid)
# summarize the results of the grid search
print(grid.best_score_)
print(grid.best_estimator_.alpha)


############################ 自定义error score函数 ############################

model = Ridge()

alphas = np.array([1,0.1,0.01,0.001,0.0001,0])
param_grid1 = dict(alpha=alphas)


def my_mse_error(real, pred):
    w_high = 1.0
    w_low = 1.0
    weight = w_high * (real - pred < 0.0) + w_low * (real - pred >= 0.0)
    mse = (np.sum((real - pred)**2 * weight) / float(len(real)))
    return mse

def my_r2_score(y_true, y_pred):
    nume = sum((y_true - y_pred) ** 2)
    deno= sum((y_true - np.average(y_true, axis=0)) ** 2)

    r2_score = 1 - (nume/deno)
    return r2_score


error_score1 = make_scorer(my_mse_error, greater_is_better=False) # error less is better.
error_score2 = make_scorer(my_r2_score, greater_is_better=True) # error less is better.
#custom_scoring = {'weighted_MSE' : salesError}
grid_search = GridSearchCV(model, param_grid = param_grid1, scoring= error_score2, n_jobs=-1) #neg_mean_absolute_error
grid_result = grid_search.fit(X,y)
# summarize results
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_)) # learning_rate = 0.1