代码改变世界

grid search

2017-09-04 11:56  xplorerthik  阅读(499)  评论(0编辑  收藏  举报
sklearn.metrics.make_scorer(score_funcgreater_is_better=Trueneeds_proba=Falseneeds_threshold=False**kwargs)[source]

>>> from sklearn.metrics import fbeta_score, make_scorer >>> ftwo_scorer = make_scorer(fbeta_score, beta=2) >>> ftwo_scorer make_scorer(fbeta_score, beta=2) >>> from sklearn.model_selection import GridSearchCV >>> from sklearn.svm import LinearSVC >>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]}, ... scoring=ftwo_scorer)

fbeta_score 可以自定义。
 
>>> from sklearn.metrics import fbeta_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> fbeta_score(y_true, y_pred, average='macro', beta=0.5)
参考文献#########################################################################
http://scikit-learn.org/stable/auto_examples/plot_compare_reduction.html#sphx-glr-auto-examples-plot-compare-reduction-py

pipe = Pipeline([ ('reduce_dim', PCA()), ('classify', LinearSVC()) ]) N_FEATURES_OPTIONS = [2, 4, 8] C_OPTIONS = [1, 10, 100, 1000]
# param_grid 分了3中情况 param_grid = [ { 'reduce_dim': [PCA(iterated_power=7), NMF()], 'reduce_dim__n_components': N_FEATURES_OPTIONS, 'classify__C': C_OPTIONS }, { 'reduce_dim': [SelectKBest(chi2)], 'reduce_dim__k': N_FEATURES_OPTIONS, 'classify__C': C_OPTIONS }, ] reducer_labels = ['PCA', 'NMF', 'KBest(chi2)'] grid = GridSearchCV(pipe, cv=3, n_jobs=1, param_grid=param_grid) digits = load_digits() grid.fit(digits.data, digits.target)