Posted on
2019-04-09 20:47
心默默言
阅读(
721 )
评论()
编辑
收藏
举报
PCA——主成分分析
简介
PCA全称Principal Component Analysis,即主成分分析,是一种常用的数据降维方法。它可以通过线性变换 将原始数据变换为一组各维度线性无关 的表示,以此来提取数据的主要线性分量 。
z=wTx 其中,z为低维矩阵,x为高维矩阵,w为两者之间的映射关系。假如我们有二维数据(原始数据有两个特征轴——特征1和特征2)如下图所示,样本点分布为斜45°的蓝色椭圆区域。
PCA算法认为斜45°为主要线性分量,与之正交的虚线是次要线性分量(应当舍去以达到降维的目的)。
划重点:
线性变换=>新特征轴可由原始特征轴线性变换表征
线性无关=>构建的特征轴是正交的
主要线性分量(或者说是主成分)=>方差加大的方向
PCA算法的求解就是找到主要线性分量及其表征方式的过程
相应的,PCA解释方差并对离群点很敏感:少量原远离中心的点对方差有很大的影响,从而也对特征向量有很大的影响。
线性变换
一个矩阵与一个列向量A相乘,等到一个新的列向量B,则称该矩阵为列向量A到列向量B的线性变换。
我们希望投影后投影值尽可能分散,而这种分散程度,可以用数学上的方差来表述。
即寻找一个一维基,使得所有数据变换为这个基上的坐标表示后,方差值最大。
解释:方差越大,说明数据越分散。通常认为,数据的某个特征维度上数据越分散,该特征越重要。
对于更高维度,还有一个问题需要解决,考虑三维降到二维问题。与之前相同,首先我们希望找到一个方向使得投影后方差最大,这样就完成了第一个方向的选择,继而我们选择第二个投影方向。如果我们还是单纯只选择方差最大的方向,很明显,这个方向与第一个方向应该是“几乎重合在一起”,显然这样的维度是没有用的,因此,应该有其他约束条件——就是正交
解释:从直观上说,让两个字段尽可能表示更多的原始信息,我们是不希望它们之间存在(线性)相关性的,因为相关性意味着两个字段不是完全独立,必然存在重复表示的信息。 字段在本文中指,降维后的样本的特征轴
数学上可以用两个字段的协方差表示其相关性:
注意:应该除以m-1
当协方差为0时,表示两个字段线性不相关。
总结一下,PCA的优化目标是:将一组N维向量降为K维(K大于0,小于N),其目标是选择K个单位正交基,使得原始数据变换到这组基上后,各字段两两间协方差为0,而字段的方差则尽可能大。
所以现在的重点是方差和协方差
协方差
在统计学上,协方差用来刻画两个随机变量之间的相关性,反映的是变量之间的二阶统计特性。考虑两个随机变量Xi 和 Xj ,它们的协方差定义为:
协方差矩阵:
假设有m个变量,特征维度为2,a1表示变量1的a特征。那么构成的数据集矩阵为:
再假设它们的均值都是0,对于有两个均值为0的m维向量组成的向量组,
可以发现对角线上的元素是两个字段的方差,其他元素是两个字段的协方差,两者都被统一到了一个矩阵——协方差矩阵中。
回顾一下前面所说的PCA算法的目标:方差max,协方差min!!
要达到PCA降维目的,等价于将协方差矩阵对角化:即除对角线外的其他元素化为0,并且在对角线上将元素按大小从上到下排列,这样我们就达到了优化目的。
设原始数据矩阵X对应的协方差矩阵为C,而P是一组基按行组成的矩阵,设Y=PX,则Y为X对P做基变换后的数据。设Y的协方差矩阵为D,我们推导一下D与C的关系:
解释:想让原始数据集X =>pca成数据集Y,使得Y的协方差矩阵是个对角矩阵。 有上述推导可得,若有矩阵P能使X的协方差矩阵对角化,则P就是我们要找的PCA变换。
优化目标变成了寻找一个矩阵P,满足 是一个对角矩阵,并且对角元素按从大到小依次排列,那么P的前K行就是要寻找的基,用P的前K行组成的矩阵乘以X就使得X从N维降到了K维,并满足上述优化条件。
矩阵对角化
首先,原始数据矩阵X的协方差矩阵C是一个实对称矩阵,它有特殊的数学性质:
实对称矩阵不同特征值对应的特征向量必然正交。
设特征值λ重数为r,则必然存在r个线性无关的特征向量对应于λ,因此可以将这r个特征向量单位正交化。
P是协方差矩阵的特征向量单位化后按行排列出的矩阵,其中每一行都是C的一个特征向量。如果设P按照中特征值的从大到小,将特征向量从上到下排列,则用P的前K行组成的矩阵乘以原始数据矩阵X,就得到了我们需要的降维后的数据矩阵Y。
算法及实例
PCA算法
小例子:
降维过程的示意图
https://www.jianshu.com/u/1ebb0a071a9f
5.1 3.5 1.4 0.2 Iris-setosa
0
4.9
3.0
1.4
0.2
Iris-setosa
1
4.7
3.2
1.3
0.2
Iris-setosa
2
4.6
3.1
1.5
0.2
Iris-setosa
3
5.0
3.6
1.4
0.2
Iris-setosa
4
5.4
3.9
1.7
0.4
Iris-setosa
sepal_len sepal_wid petal_len petal_wid class
0
4.9
3.0
1.4
0.2
Iris-setosa
1
4.7
3.2
1.3
0.2
Iris-setosa
2
4.6
3.1
1.5
0.2
Iris-setosa
3
5.0
3.6
1.4
0.2
Iris-setosa
4
5.4
3.9
1.7
0.4
Iris-setosa
[[-1.1483555 -0.11805969 -1.35396443 -1.32506301]
[-1.3905423 0.34485856 -1.41098555 -1.32506301]
[-1.51163569 0.11339944 -1.29694332 -1.32506301]
[-1.02726211 1.27069504 -1.35396443 -1.32506301]
[-0.54288852 1.9650724 -1.18290109 -1.0614657 ]
[-1.51163569 0.8077768 -1.35396443 -1.19326436]
[-1.02726211 0.8077768 -1.29694332 -1.32506301]
[-1.75382249 -0.34951881 -1.35396443 -1.32506301]
[-1.1483555 0.11339944 -1.29694332 -1.45686167]
[-0.54288852 1.50215416 -1.29694332 -1.32506301]
[-1.2694489 0.8077768 -1.23992221 -1.32506301]
[-1.2694489 -0.11805969 -1.35396443 -1.45686167]
[-1.87491588 -0.11805969 -1.52502777 -1.45686167]
[-0.05851493 2.19653152 -1.46800666 -1.32506301]
[-0.17960833 3.122368 -1.29694332 -1.0614657 ]
[-0.54288852 1.9650724 -1.41098555 -1.0614657 ]
[-0.90616871 1.03923592 -1.35396443 -1.19326436]
[-0.17960833 1.73361328 -1.18290109 -1.19326436]
[-0.90616871 1.73361328 -1.29694332 -1.19326436]
[-0.54288852 0.8077768 -1.18290109 -1.32506301]
[-0.90616871 1.50215416 -1.29694332 -1.0614657 ]
[-1.51163569 1.27069504 -1.58204889 -1.32506301]
[-0.90616871 0.57631768 -1.18290109 -0.92966704]
[-1.2694489 0.8077768 -1.06885886 -1.32506301]
[-1.02726211 -0.11805969 -1.23992221 -1.32506301]
[-1.02726211 0.8077768 -1.23992221 -1.0614657 ]
[-0.78507531 1.03923592 -1.29694332 -1.32506301]
[-0.78507531 0.8077768 -1.35396443 -1.32506301]
[-1.3905423 0.34485856 -1.23992221 -1.32506301]
[-1.2694489 0.11339944 -1.23992221 -1.32506301]
[-0.54288852 0.8077768 -1.29694332 -1.0614657 ]
[-0.78507531 2.42799064 -1.29694332 -1.45686167]
[-0.42179512 2.65944976 -1.35396443 -1.32506301]
[-1.1483555 0.11339944 -1.29694332 -1.45686167]
[-1.02726211 0.34485856 -1.46800666 -1.32506301]
[-0.42179512 1.03923592 -1.41098555 -1.32506301]
[-1.1483555 0.11339944 -1.29694332 -1.45686167]
[-1.75382249 -0.11805969 -1.41098555 -1.32506301]
[-0.90616871 0.8077768 -1.29694332 -1.32506301]
[-1.02726211 1.03923592 -1.41098555 -1.19326436]
[-1.63272909 -1.73827353 -1.41098555 -1.19326436]
[-1.75382249 0.34485856 -1.41098555 -1.32506301]
[-1.02726211 1.03923592 -1.23992221 -0.79786838]
[-0.90616871 1.73361328 -1.06885886 -1.0614657 ]
[-1.2694489 -0.11805969 -1.35396443 -1.19326436]
[-0.90616871 1.73361328 -1.23992221 -1.32506301]
[-1.51163569 0.34485856 -1.35396443 -1.32506301]
[-0.66398191 1.50215416 -1.29694332 -1.32506301]
[-1.02726211 0.57631768 -1.35396443 -1.32506301]
[ 1.39460583 0.34485856 0.52773232 0.25652088]
[ 0.66804545 0.34485856 0.41369009 0.38831953]
[ 1.27351244 0.11339944 0.64177455 0.38831953]
[-0.42179512 -1.73827353 0.12858453 0.12472222]
[ 0.78913885 -0.58097793 0.47071121 0.38831953]
[-0.17960833 -0.58097793 0.41369009 0.12472222]
[ 0.54695205 0.57631768 0.52773232 0.52011819]
[-1.1483555 -1.50681441 -0.27056327 -0.27067375]
[ 0.91023225 -0.34951881 0.47071121 0.12472222]
[-0.78507531 -0.81243705 0.07156341 0.25652088]
[-1.02726211 -2.43265089 -0.15652104 -0.27067375]
[ 0.06257847 -0.11805969 0.24262675 0.38831953]
[ 0.18367186 -1.96973265 0.12858453 -0.27067375]
[ 0.30476526 -0.34951881 0.52773232 0.25652088]
[-0.30070172 -0.34951881 -0.09949993 0.12472222]
[ 1.03132564 0.11339944 0.35666898 0.25652088]
[-0.30070172 -0.11805969 0.41369009 0.38831953]
[-0.05851493 -0.81243705 0.18560564 -0.27067375]
[ 0.42585866 -1.96973265 0.41369009 0.38831953]
[-0.30070172 -1.27535529 0.07156341 -0.1388751 ]
[ 0.06257847 0.34485856 0.58475344 0.78371551]
[ 0.30476526 -0.58097793 0.12858453 0.12472222]
[ 0.54695205 -1.27535529 0.64177455 0.38831953]
[ 0.30476526 -0.58097793 0.52773232 -0.00707644]
[ 0.66804545 -0.34951881 0.29964787 0.12472222]
[ 0.91023225 -0.11805969 0.35666898 0.25652088]
[ 1.15241904 -0.58097793 0.58475344 0.25652088]
[ 1.03132564 -0.11805969 0.69879566 0.65191685]
[ 0.18367186 -0.34951881 0.41369009 0.38831953]
[-0.17960833 -1.04389617 -0.15652104 -0.27067375]
[-0.42179512 -1.50681441 0.0145423 -0.1388751 ]
[-0.42179512 -1.50681441 -0.04247882 -0.27067375]
[-0.05851493 -0.81243705 0.07156341 -0.00707644]
[ 0.18367186 -0.81243705 0.75581678 0.52011819]
[-0.54288852 -0.11805969 0.41369009 0.38831953]
[ 0.18367186 0.8077768 0.41369009 0.52011819]
[ 1.03132564 0.11339944 0.52773232 0.38831953]
[ 0.54695205 -1.73827353 0.35666898 0.12472222]
[-0.30070172 -0.11805969 0.18560564 0.12472222]
[-0.42179512 -1.27535529 0.12858453 0.12472222]
[-0.42179512 -1.04389617 0.35666898 -0.00707644]
[ 0.30476526 -0.11805969 0.47071121 0.25652088]
[-0.05851493 -1.04389617 0.12858453 -0.00707644]
[-1.02726211 -1.73827353 -0.27056327 -0.27067375]
[-0.30070172 -0.81243705 0.24262675 0.12472222]
[-0.17960833 -0.11805969 0.24262675 -0.00707644]
[-0.17960833 -0.34951881 0.24262675 0.12472222]
[ 0.42585866 -0.34951881 0.29964787 0.12472222]
[-0.90616871 -1.27535529 -0.44162661 -0.1388751 ]
[-0.17960833 -0.58097793 0.18560564 0.12472222]
[ 0.54695205 0.57631768 1.2690068 1.70630611]
[-0.05851493 -0.81243705 0.75581678 0.91551417]
[ 1.51569923 -0.11805969 1.21198569 1.17911148]
[ 0.54695205 -0.34951881 1.04092235 0.78371551]
[ 0.78913885 -0.11805969 1.15496457 1.31091014]
[ 2.12116622 -0.11805969 1.61113348 1.17911148]
[-1.1483555 -1.27535529 0.41369009 0.65191685]
[ 1.75788602 -0.34951881 1.44007014 0.78371551]
[ 1.03132564 -1.27535529 1.15496457 0.78371551]
[ 1.63679263 1.27069504 1.32602791 1.70630611]
[ 0.78913885 0.34485856 0.75581678 1.04731282]
[ 0.66804545 -0.81243705 0.869859 0.91551417]
[ 1.15241904 -0.11805969 0.98390123 1.17911148]
[-0.17960833 -1.27535529 0.69879566 1.04731282]
[-0.05851493 -0.58097793 0.75581678 1.57450745]
[ 0.66804545 0.34485856 0.869859 1.4427088 ]
[ 0.78913885 -0.11805969 0.98390123 0.78371551]
[ 2.24225961 1.73361328 1.6681546 1.31091014]
[ 2.24225961 -1.04389617 1.78219682 1.4427088 ]
[ 0.18367186 -1.96973265 0.69879566 0.38831953]
[ 1.27351244 0.34485856 1.09794346 1.4427088 ]
[-0.30070172 -0.58097793 0.64177455 1.04731282]
[ 2.24225961 -0.58097793 1.6681546 1.04731282]
[ 0.54695205 -0.81243705 0.64177455 0.78371551]
[ 1.03132564 0.57631768 1.09794346 1.17911148]
[ 1.63679263 0.34485856 1.2690068 0.78371551]
[ 0.42585866 -0.58097793 0.58475344 0.78371551]
[ 0.30476526 -0.11805969 0.64177455 0.78371551]
[ 0.66804545 -0.58097793 1.04092235 1.17911148]
[ 1.63679263 -0.11805969 1.15496457 0.52011819]
[ 1.87897942 -0.58097793 1.32602791 0.91551417]
[ 2.48444641 1.73361328 1.49709126 1.04731282]
[ 0.66804545 -0.58097793 1.04092235 1.31091014]
[ 0.54695205 -0.58097793 0.75581678 0.38831953]
[ 0.30476526 -1.04389617 1.04092235 0.25652088]
[ 2.24225961 -0.11805969 1.32602791 1.4427088 ]
[ 0.54695205 0.8077768 1.04092235 1.57450745]
[ 0.66804545 0.11339944 0.98390123 0.78371551]
[ 0.18367186 -0.11805969 0.58475344 0.78371551]
[ 1.27351244 0.11339944 0.92688012 1.17911148]
[ 1.03132564 0.11339944 1.04092235 1.57450745]
[ 1.27351244 0.11339944 0.75581678 1.4427088 ]
[-0.05851493 -0.81243705 0.75581678 0.91551417]
[ 1.15241904 0.34485856 1.21198569 1.4427088 ]
[ 1.03132564 0.57631768 1.09794346 1.70630611]
[ 1.03132564 -0.11805969 0.81283789 1.4427088 ]
[ 0.54695205 -1.27535529 0.69879566 0.91551417]
[ 0.78913885 -0.11805969 0.81283789 1.04731282]
[ 0.42585866 0.8077768 0.92688012 1.4427088 ]
[ 0.06257847 -0.11805969 0.75581678 0.78371551]]
Covariance matrix
[[ 1.00675676 -0.10448539 0.87716999 0.82249094]
[-0.10448539 1.00675676 -0.41802325 -0.35310295]
[ 0.87716999 -0.41802325 1.00675676 0.96881642]
[ 0.82249094 -0.35310295 0.96881642 1.00675676]]
NumPy covariance matrix:
[[ 1.00675676 -0.10448539 0.87716999 0.82249094]
[-0.10448539 1.00675676 -0.41802325 -0.35310295]
[ 0.87716999 -0.41802325 1.00675676 0.96881642]
[ 0.82249094 -0.35310295 0.96881642 1.00675676]]
Eigenvectors
[[ 0.52308496 -0.36956962 -0.72154279 0.26301409]
[-0.25956935 -0.92681168 0.2411952 -0.12437342]
[ 0.58184289 -0.01912775 0.13962963 -0.80099722]
[ 0.56609604 -0.06381646 0.63380158 0.52321917]]
Eigenvalues
[2.92442837 0.93215233 0.14946373 0.02098259]
[(2.92442836911111, array([ 0.52308496, -0.25956935, 0.58184289, 0.56609604])), (0.9321523302535064, array([-0.36956962, -0.92681168, -0.01912775, -0.06381646])), (0.14946373489813336, array([-0.72154279, 0.2411952 , 0.13962963, 0.63380158])), (0.020982592764270974, array([ 0.26301409, -0.12437342, -0.80099722, 0.52321917]))]
----------
Eigenvalues in descending order:
2.92442836911111
0.9321523302535064
0.14946373489813336
0.020982592764270974
[72.6200333269203, 23.14740685864416, 3.711515564584526, 0.521044249851025]
Out[18]:
array([ 72.62003333, 95.76744019, 99.47895575, 100. ])
[1 2 3 4]
-----------
[ 1 3 6 10]
Matrix W:
[[ 0.52308496 -0.36956962]
[-0.25956935 -0.92681168]
[ 0.58184289 -0.01912775]
[ 0.56609604 -0.06381646]]
Out[21]:
array([[-2.10795032, 0.64427554],
[-2.38797131, 0.30583307],
[-2.32487909, 0.56292316],
[-2.40508635, -0.687591 ],
[-2.08320351, -1.53025171],
[-2.4636848 , -0.08795413],
[-2.25174963, -0.25964365],
[-2.3645813 , 1.08255676],
[-2.20946338, 0.43707676],
[-2.17862017, -1.08221046],
[-2.34525657, -0.17122946],
[-2.24590315, 0.6974389 ],
[-2.66214582, 0.92447316],
[-2.2050227 , -1.90150522],
[-2.25993023, -2.73492274],
[-2.21591283, -1.52588897],
[-2.20705382, -0.52623535],
[-1.9077081 , -1.4415791 ],
[-2.35411558, -1.17088308],
[-1.93202643, -0.44083479],
[-2.21942518, -0.96477499],
[-2.79116421, -0.50421849],
[-1.83814105, -0.11729122],
[-2.24572458, -0.17450151],
[-1.97825353, 0.59734172],
[-2.06935091, -0.27755619],
[-2.18514506, -0.56366755],
[-2.15824269, -0.34805785],
[-2.28843932, 0.30256102],
[-2.16501749, 0.47232759],
[-1.8491597 , -0.45547527],
[-2.62023392, -1.84237072],
[-2.44885384, -2.1984673 ],
[-2.20946338, 0.43707676],
[-2.23112223, 0.17266644],
[-2.06147331, -0.6957435 ],
[-2.20946338, 0.43707676],
[-2.45783833, 0.86912843],
[-2.1884075 , -0.30439609],
[-2.30357329, -0.48039222],
[-1.89932763, 2.31759817],
[-2.57799771, 0.4400904 ],
[-1.98020921, -0.50889705],
[-2.14679556, -1.18365675],
[-2.09668176, 0.68061705],
[-2.39554894, -1.16356284],
[-2.41813611, 0.34949483],
[-2.24196231, -1.03745802],
[-2.22484727, -0.04403395],
[ 1.09225538, -0.86148748],
[ 0.72045861, -0.59920238],
[ 1.2299583 , -0.61280832],
[ 0.37598859, 1.756516 ],
[ 1.05729685, 0.21303055],
[ 0.36816104, 0.58896262],
[ 0.73800214, -0.77956125],
[-0.52021731, 1.84337921],
[ 0.9113379 , -0.02941906],
[-0.01292322, 1.02537703],
[-0.15020174, 2.65452146],
[ 0.42437533, 0.05686991],
[ 0.52894687, 1.77250558],
[ 0.70241525, 0.18484154],
[-0.05385675, 0.42901221],
[ 0.86277668, -0.50943908],
[ 0.33388091, 0.18785518],
[ 0.13504146, 0.7883247 ],
[ 1.19457128, 1.63549265],
[ 0.13677262, 1.30063807],
[ 0.72711201, -0.40394501],
[ 0.45564294, 0.41540628],
[ 1.21038365, 0.94282042],
[ 0.61327355, 0.4161824 ],
[ 0.68512164, 0.06335788],
[ 0.85951424, -0.25016762],
[ 1.23906722, 0.08500278],
[ 1.34575245, -0.32669695],
[ 0.64732915, 0.22336443],
[-0.06728496, 1.05414028],
[ 0.10033285, 1.56100021],
[-0.00745518, 1.57050182],
[ 0.2179082 , 0.77368423],
[ 1.04116321, 0.63744742],
[ 0.20719664, 0.27736006],
[ 0.42154138, -0.85764157],
[ 1.03691937, -0.52112206],
[ 1.015435 , 1.39413373],
[ 0.0519502 , 0.20903977],
[ 0.25582921, 1.32747797],
[ 0.25384813, 1.11700714],
[ 0.60915822, -0.02858679],
[ 0.31116522, 0.98711256],
[-0.39679548, 2.01314578],
[ 0.26536661, 0.85150613],
[ 0.07385897, 0.17160757],
[ 0.20854936, 0.37771566],
[ 0.55843737, 0.15286277],
[-0.47853403, 1.53421644],
[ 0.23545172, 0.59332536],
[ 1.8408037 , -0.86943848],
[ 1.13831104, 0.70171953],
[ 2.19615974, -0.54916658],
[ 1.42613827, 0.05187679],
[ 1.8575403 , -0.28797217],
[ 2.74511173, -0.78056359],
[ 0.34010583, 1.5568955 ],
[ 2.29180093, -0.40328242],
[ 1.98618025, 0.72876171],
[ 2.26382116, -1.91685818],
[ 1.35591821, -0.69255356],
[ 1.58471851, 0.43102351],
[ 1.87342402, -0.41054652],
[ 1.23656166, 1.16818977],
[ 1.45128483, 0.4451459 ],
[ 1.58276283, -0.67521526],
[ 1.45956552, -0.25105642],
[ 2.43560434, -2.55096977],
[ 3.29752602, 0.01266612],
[ 1.23377366, 1.71954411],
[ 2.03218282, -0.90334021],
[ 0.95980311, 0.57047585],
[ 2.88717988, -0.38895776],
[ 1.31405636, 0.48854962],
[ 1.69619746, -1.01153249],
[ 1.94868773, -0.99881497],
[ 1.1574572 , 0.31987373],
[ 1.007133 , -0.06550254],
[ 1.7733922 , 0.19641059],
[ 1.85327106, -0.55077372],
[ 2.4234788 , -0.2397454 ],
[ 2.31353522, -2.62038074],
[ 1.84800289, 0.18799967],
[ 1.09649923, 0.29708201],
[ 1.1812503 , 0.81858241],
[ 2.79178861, -0.83668445],
[ 1.57340399, -1.07118383],
[ 1.33614369, -0.420823 ],
[ 0.91061354, -0.01965942],
[ 1.84350913, -0.66872729],
[ 2.00701161, -0.60663655],
[ 1.89319854, -0.68227708],
[ 1.13831104, 0.70171953],
[ 2.03519535, -0.86076914],
[ 1.99464025, -1.04517619],
[ 1.85977129, -0.37934387],
[ 1.54200377, 0.90808604],
[ 1.50925493, -0.26460621],
[ 1.3690965 , -1.01583909],
[ 0.94680339, 0.02182097]])
进一步讨论 根据上面对PCA的数学原理的解释,我们可以了解到一些PCA的能力和限制。PCA本质上是将方差最大的方向作为主要特征,并且在各个正交方向上将数据“离相关”,也就是让它们在不同正交方向上没有相关性。
因此,PCA也存在一些限制,例如它可以很好的解除线性相关,但是对于高阶相关性就没有办法了,对于存在高阶相关性的数据,可以考虑Kernel PCA,通过Kernel函数将非线性相关转为线性相关,关于这点就不展开讨论了。另外,PCA假设数据各主特征是分布在正交方向上,如果在非正交方向上存在几个方差较大的方向,PCA的效果就大打折扣了。
最后需要说明的是,PCA是一种无参数技术,也就是说面对同样的数据,如果不考虑清洗,谁来做结果都一样,没有主观参数的介入,所以PCA便于通用实现,但是本身无法个性化的优化。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)