Spark 源码解读(五)SparkContext的初始化之创建和启动DAGScheduler

Spark 源码解读(五)SparkContext的初始化之创建和启动DAGScheduler

DAGScheduler主要用于在任务正式提交给TaskSchedulerImpl提交之前做一些准备工作,包括:创建job,将DAG中的RDD划分到不同的Stage,提交Stage等等。SparkContext中创建DAGScheduler的代码如下所示:

 _dagScheduler = new DAGScheduler(this)

在DAGScheduler维护了jobId和StageId的关系,Stage,ActiveJob以及缓存的RDD的partition的位置信息。

代码如下:

 private[scheduler] val nextJobId = new AtomicInteger(0)
  private[scheduler] def numTotalJobs: Int = nextJobId.get()
  private val nextStageId = new AtomicInteger(0)

  private[scheduler] val jobIdToStageIds = new HashMap[Int, HashSet[Int]]
  private[scheduler] val stageIdToStage = new HashMap[Int, Stage]
  /**
   * Mapping from shuffle dependency ID to the ShuffleMapStage that will generate the data for
   * that dependency. Only includes stages that are part of currently running job (when the job(s)
   * that require the shuffle stage complete, the mapping will be removed, and the only record of
   * the shuffle data will be in the MapOutputTracker).
   */
  private[scheduler] val shuffleIdToMapStage = new HashMap[Int, ShuffleMapStage]
  private[scheduler] val jobIdToActiveJob = new HashMap[Int, ActiveJob]

  // Stages we need to run whose parents aren't done
  private[scheduler] val waitingStages = new HashSet[Stage]

  // Stages we are running right now
  private[scheduler] val runningStages = new HashSet[Stage]

  // Stages that must be resubmitted due to fetch failures
  private[scheduler] val failedStages = new HashSet[Stage]

  private[scheduler] val activeJobs = new HashSet[ActiveJob]

  /**
   * Contains the locations that each RDD's partitions are cached on.  This map's keys are RDD ids
   * and its values are arrays indexed by partition numbers. Each array value is the set of
   * locations where that RDD partition is cached.
   *
   * All accesses to this map should be guarded by synchronizing on it (see SPARK-4454).
   */
  private val cacheLocs = new HashMap[Int, IndexedSeq[Seq[TaskLocation]]]

  // For tracking failed nodes, we use the MapOutputTracker's epoch number, which is sent with
  // every task. When we detect a node failing, we note the current epoch number and failed
  // executor, increment it for new tasks, and use this to ignore stray ShuffleMapTask results.
  //
  // TODO: Garbage collect information about failure epochs when we know there are no more
  //       stray messages to detect.
  private val failedEpoch = new HashMap[String, Long]

  private [scheduler] val outputCommitCoordinator = env.outputCommitCoordinator

  // A closure serializer that we reuse.
  // This is only safe because DAGScheduler runs in a single thread.
  private val closureSerializer = SparkEnv.get.closureSerializer.newInstance()

后续完善。。。。

posted @ 2020-07-07 23:09  这个小仙女真可爱  阅读(136)  评论(0编辑  收藏  举报