Spark 源码解读(四)SparkContext的初始化之创建任务调度器TaskScheduler
Spark 源码解读(四)SparkContext的初始化之创建任务调度器TaskScheduler
TaskScheduler负责任务任务的提交,并请求集群管理器对任务的调度。创建TaskScheduler的代码如下:
val (sched, ts) = SparkContext.createTaskScheduler(this, master, deployMode)
createTaskScheduler方法会根据master的配置匹配部署模式,创建TaskSchedulerImpl,并且生成不同的SchedulerBackend。代码如下:
private def createTaskScheduler(
sc: SparkContext,
master: String,
deployMode: String): (SchedulerBackend, TaskScheduler) = {
import SparkMasterRegex._
// When running locally, don't try to re-execute tasks on failure.
val MAX_LOCAL_TASK_FAILURES = 1
master match {
case "local" =>
val scheduler = new TaskSchedulerImpl(sc, MAX_LOCAL_TASK_FAILURES, isLocal = true)
val backend = new LocalSchedulerBackend(sc.getConf, scheduler, 1)
scheduler.initialize(backend)
(backend, scheduler)
case LOCAL_N_REGEX(threads) =>
def localCpuCount: Int = Runtime.getRuntime.availableProcessors()
// local[*] estimates the number of cores on the machine; local[N] uses exactly N threads.
val threadCount = if (threads == "*") localCpuCount else threads.toInt
if (threadCount <= 0) {
throw new SparkException(s"Asked to run locally with $threadCount threads")
}
val scheduler = new TaskSchedulerImpl(sc, MAX_LOCAL_TASK_FAILURES, isLocal = true)
val backend = new LocalSchedulerBackend(sc.getConf, scheduler, threadCount)
scheduler.initialize(backend)
(backend, scheduler)
case LOCAL_N_FAILURES_REGEX(threads, maxFailures) =>
def localCpuCount: Int = Runtime.getRuntime.availableProcessors()
// local[*, M] means the number of cores on the computer with M failures
// local[N, M] means exactly N threads with M failures
val threadCount = if (threads == "*") localCpuCount else threads.toInt
val scheduler = new TaskSchedulerImpl(sc, maxFailures.toInt, isLocal = true)
val backend = new LocalSchedulerBackend(sc.getConf, scheduler, threadCount)
scheduler.initialize(backend)
(backend, scheduler)
case SPARK_REGEX(sparkUrl) =>
val scheduler = new TaskSchedulerImpl(sc)
val masterUrls = sparkUrl.split(",").map("spark://" + _)
val backend = new StandaloneSchedulerBackend(scheduler, sc, masterUrls)
scheduler.initialize(backend)
(backend, scheduler)
case LOCAL_CLUSTER_REGEX(numSlaves, coresPerSlave, memoryPerSlave) =>
// Check to make sure memory requested <= memoryPerSlave. Otherwise Spark will just hang.
val memoryPerSlaveInt = memoryPerSlave.toInt
if (sc.executorMemory > memoryPerSlaveInt) {
throw new SparkException(
"Asked to launch cluster with %d MB RAM / worker but requested %d MB/worker".format(
memoryPerSlaveInt, sc.executorMemory))
}
val scheduler = new TaskSchedulerImpl(sc)
val localCluster = new LocalSparkCluster(
numSlaves.toInt, coresPerSlave.toInt, memoryPerSlaveInt, sc.conf)
val masterUrls = localCluster.start()
val backend = new StandaloneSchedulerBackend(scheduler, sc, masterUrls)
scheduler.initialize(backend)
backend.shutdownCallback = (backend: StandaloneSchedulerBackend) => {
localCluster.stop()
}
(backend, scheduler)
case masterUrl =>
val cm = getClusterManager(masterUrl) match {
case Some(clusterMgr) => clusterMgr
case None => throw new SparkException("Could not parse Master URL: '" + master + "'")
}
try {
val scheduler = cm.createTaskScheduler(sc, masterUrl)
val backend = cm.createSchedulerBackend(sc, masterUrl, scheduler)
cm.initialize(scheduler, backend)
(backend, scheduler)
} catch {
case se: SparkException => throw se
case NonFatal(e) =>
throw new SparkException("External scheduler cannot be instantiated", e)
}
}
}
创建TaskSchedulerImpl
TaskSchedulerImpl的构造过程如下:
- 从SparkConf中读取配置信息,包括每个任务分配的CPU数,调度模式(调度模式有FAIR和FIFO两种,默认为FIFO,可以修改属性spark.scheduler.mode来改变)等。
- 创建TaskResultGetter,它的作用是通过线程池(Executor.newFixedThreadPool创建的,默认4个线程,线程名字以task-result-getter开头,线程工厂默认是Executors.default-ThreadFactory)对Work上的Executor发送的Task执行结果进行处理。
代码如下所示:
var dagScheduler: DAGScheduler = null
var backend: SchedulerBackend = null
val mapOutputTracker = SparkEnv.get.mapOutputTracker
var schedulableBuilder: SchedulableBuilder = null
var rootPool: Pool = null
// default scheduler is FIFO
private val schedulingModeConf = conf.get("spark.scheduler.mode", "FIFO")
val schedulingMode: SchedulingMode = try {
SchedulingMode.withName(schedulingModeConf.toUpperCase)
} catch {
case e: java.util.NoSuchElementException =>
throw new SparkException(s"Unrecognized spark.scheduler.mode: $schedulingModeConf")
}
// This is a var so that we can reset it for testing purposes.
private[spark] var taskResultGetter = new TaskResultGetter(sc.env, this)
TaskSchedulerImpl的initialize()方法:
def initialize(backend: SchedulerBackend) {
this.backend = backend
// temporarily set rootPool name to empty
rootPool = new Pool("", schedulingMode, 0, 0)
schedulableBuilder = {
schedulingMode match {
case SchedulingMode.FIFO =>
new FIFOSchedulableBuilder(rootPool)
case SchedulingMode.FAIR =>
new FairSchedulableBuilder(rootPool, conf)
case _ =>
throw new IllegalArgumentException(s"Unsupported spark.scheduler.mode: $schedulingMode")
}
}
schedulableBuilder.buildPools()
}
创建完TaskSchedulerImpl和Backend后,对TaskSchedulerImpl调用initiallize进行初始化。从以上两段代码可以看出TaskSchedulerImpl的调度模式有FAIR和FIFO两种,默认FIFO。任务的最终调度实际都是落实到接口SchedulerBackend的具体实现上的。 TaskSchedulerImpl的初始化过程如下:
- 使TaskSchedulerImpl持有LocalBackend的引用
- 创建Pool,Pool中缓存了调度队列、调度算法及TaskSetManager集合等信息
- 创建FIFOSchedulableBuilder,FIFOSchedulableBuilder用来操作Pool中的调度队列。
(结构有点混乱,后续修改。。。)