hadoop reduce端联结
此例子摘自hadoop基础教程。
其中sales.txt内容如下
客户编号 客户消费额度 消费时间
001 35.99 2012-03-15 002 12.29 2004-07-02 004 13.42 2005-12-20 003 499.99 2010-12-20 001 78.95 2012-04-02 002 21.99 2006-11-30 002 93.45 2008-09-10 001 9.99 2012-05-17
accounts.txt内容如下:
客户编号 姓名 注册时间
001 John AllenStandard 2012-03-15 002 Abigail SmithPremium 2004-07-13 003 April StevensStandard 2010-12-20 004 Nasser HafezPremium 2001-04-23
我们的目标是通过reduce端联结求出每个客户姓名 消费的次数 消费额
代码如下:
import java.io.*; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.*; import org.apache.hadoop.mapreduce.lib.input.*; import org.apache.hadoop.mapreduce.lib.output.*; public class ReduceJoin { //sales.txt的处理 客户ID 消费额度 消费时间 public static class SalesRecordMapper extends Mapper<Object, Text, Text, Text> { public void map(Object key, Text value, Context context) throws IOException, InterruptedException { String record = value.toString(); String[] parts = record.split("\t"); context.write(new Text(parts[0]), new Text("sales\t"+parts[1])); } } //accounts.txt的处理 客户id 客户姓名 办卡时间 public static class AccountRecordMapper extends Mapper<Object, Text, Text, Text> { public void map(Object key, Text value, Context context) throws IOException, InterruptedException { String record = value.toString(); String[] parts = record.split("\t"); context.write(new Text(parts[0]), new Text("accounts\t"+parts[1])); } } //reduce public static class ReduceJoinReducer extends Reducer<Text, Text, Text, Text> { public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException { String name = ""; double total = 0.0; int count = 0; for(Text t:values) { String[] parts = t.toString().split("\t"); if(parts[0].equals("sales")) { count++; total += Float.parseFloat(parts[1]); }else if(parts[0].equals("accounts")) { name = parts[1]; } } String str = String.format("%d\t%f", count, total); context.write(new Text(name), new Text(str)); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = new Job(conf, "Reduce端join"); job.setJarByClass(ReduceJoin.class); job.setReducerClass(ReduceJoinReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); System.out.println(args[0]); MultipleInputs.addInputPath(job, new Path(args[0]), TextInputFormat.class, SalesRecordMapper.class); MultipleInputs.addInputPath(job, new Path(args[1]), TextInputFormat.class, AccountRecordMapper.class); Path outputPath = new Path(args[2]); FileOutputFormat.setOutputPath(job, outputPath); outputPath.getFileSystem(conf).delete(outputPath); System.exit(job.waitForCompletion(true)?0:1); } }
结果截图