USACO Stall
这个题的意思是有N个奶牛, M个围栏, 一个奶牛喜欢并且只会在某个围栏中产奶, 最多能使几个奶牛同时产奶?可以构造这样的一个图,这个图的源点指向每个奶牛, 每个奶牛指向自己喜欢的围栏, 每个围栏指向汇点, 求解一次最大流即可。代码如下:
/* ID: m1500293 LANG: C++ PROG: stall4 */ #include <cstdio> #include <cstring> #include <algorithm> #include <vector> #include <cstring> #include <queue> using namespace std; const int maxn = 450; const int INF = 0x3fffffff; struct Edge { int from, to, cap, flow; Edge(int u, int v, int c, int f):from(u), to(v), cap(c), flow(f){} }; struct EdmondsKarp { int n, m; //n个顶点 m条边 vector<Edge> edges; vector<int> G[maxn]; int a[maxn]; //起点到i的可改进量 int p[maxn]; //最短路树上的入弧编号 void init() { for(int i=0; i<n; i++) G[i].clear(); edges.clear(); } void AddEdge(int from, int to, int cap) { edges.push_back(Edge(from, to, cap, 0)); edges.push_back(Edge(to, from, 0, 0)); m = edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } int Maxflow(int s, int t) { int flow = 0; for(;;) { memset(a, 0, sizeof(a)); queue<int> Q; Q.push(s); a[s] = INF; while(!Q.empty()) { int x = Q.front(); Q.pop(); for(int i=0; i<G[x].size(); i++) { Edge &e = edges[G[x][i]]; if(!a[e.to] && e.cap>e.flow) { p[e.to] = G[x][i]; a[e.to] = min(a[x], e.cap-e.flow); Q.push(e.to); } } if(a[t]) break; } if(!a[t]) break; for(int u=t; u!=s; u=edges[p[u]].from) { edges[p[u]].flow += a[t]; edges[p[u]^1].flow -= a[t]; } flow += a[t]; } return flow; } }ek; int main() { freopen("stall4.in", "r", stdin); freopen("stall4.out", "w", stdout); int N, M; scanf("%d%d", &N, &M); //N头奶牛 M个围栏 ek.n = N+M+2; ek.init(); for(int i=1; i<=N; i++) { ek.AddEdge(0, i, 1); int num; scanf("%d", &num); while(num--) { int t; scanf("%d", &t); ek.AddEdge(i, N+t, 1); } } for(int i=1; i<=M; i++) ek.AddEdge(N+i, N+M+2-1, 1); printf("%d\n", ek.Maxflow(0, N+M+2-1)); return 0; }