Sklearn学习笔记

主要记python工具包sklearn的学习内容:

链接点击这里

一、Regression & Classification

  1.1. Generalized Linear Models

  1.2. Linear and Quadratic Discriminant Analysis

  1.3. Kernel ridge regression 

  1.4. Support Vector Machines

  1.5. Stochastic Gradient Descent

  1.6. Nearest Neighbors

  1.7. Gaussian Processes

  1.8. Cross decomposition

  1.9. Naive Bayes

  1.10. Decision Trees

  1.11. Ensemble methods

  1.12. Multiclass and multilabel algorithm

  1.13. Feature selection

  1.14. Semi-Supervised

  1.15. Isotonic regression

  1.16. Probability calibration

  1.17. Neural network models (supervised)

二、Clustering

三、Dimensionality reduction

四、Model selection

六、Preprocessing

 

posted @ 2017-05-23 10:42  LeeLIn。  阅读(662)  评论(0编辑  收藏  举报