python绘制三维图
作者:桂。
时间:2017-04-27 23:24:55
链接:http://www.cnblogs.com/xingshansi/p/6777945.html
本文仅仅梳理最基本的绘图方法。
一、初始化
假设已经安装了matplotlib工具包。
利用matplotlib.figure.Figure创建一个图框:
1 2 3 4 | import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.add_subplot( 111 , projection = '3d' ) |
二、直线绘制(Line plots)
基本用法:
1 | ax.plot(x,y,z,label = ' ' ) |
code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt mpl.rcParams[ 'legend.fontsize' ] = 10 fig = plt.figure() ax = fig.gca(projection = '3d' ) theta = np.linspace( - 4 * np.pi, 4 * np.pi, 100 ) z = np.linspace( - 2 , 2 , 100 ) r = z * * 2 + 1 x = r * np.sin(theta) y = r * np.cos(theta) ax.plot(x, y, z, label = 'parametric curve' ) ax.legend() plt.show() |
三、散点绘制(Scatter plots)
基本用法:
1 | ax.scatter(xs, ys, zs, s = 20 , c = None , depthshade = True , * args, * kwargs) |
- xs,ys,zs:输入数据;
- s:scatter点的尺寸
- c:颜色,如c = 'r'就是红色;
- depthshase:透明化,True为透明,默认为True,False为不透明
- *args等为扩展变量,如maker = 'o',则scatter结果为’o‘的形状
code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np def randrange(n, vmin, vmax): ''' Helper function to make an array of random numbers having shape (n, ) with each number distributed Uniform(vmin, vmax). ''' return (vmax - vmin) * np.random.rand(n) + vmin fig = plt.figure() ax = fig.add_subplot( 111 , projection = '3d' ) n = 100 # For each set of style and range settings, plot n random points in the box # defined by x in [23, 32], y in [0, 100], z in [zlow, zhigh]. for c, m, zlow, zhigh in [( 'r' , 'o' , - 50 , - 25 ), ( 'b' , '^' , - 30 , - 5 )]: xs = randrange(n, 23 , 32 ) ys = randrange(n, 0 , 100 ) zs = randrange(n, zlow, zhigh) ax.scatter(xs, ys, zs, c = c, marker = m) ax.set_xlabel( 'X Label' ) ax.set_ylabel( 'Y Label' ) ax.set_zlabel( 'Z Label' ) plt.show() |
四、线框图(Wireframe plots)
基本用法:
1 | ax.plot_wireframe(X, Y, Z, * args, * * kwargs) |
- X,Y,Z:输入数据
- rstride:行步长
- cstride:列步长
- rcount:行数上限
- ccount:列数上限
code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot( 111 , projection = '3d' ) # Grab some test data. X, Y, Z = axes3d.get_test_data( 0.05 ) # Plot a basic wireframe. ax.plot_wireframe(X, Y, Z, rstride = 10 , cstride = 10 ) plt.show() |
五、表面图(Surface plots)
基本用法:
1 | ax.plot_surface(X, Y, Z, * args, * * kwargs) |
- X,Y,Z:数据
- rstride、cstride、rcount、ccount:同Wireframe plots定义
- color:表面颜色
- cmap:图层
code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import numpy as np fig = plt.figure() ax = fig.gca(projection = '3d' ) # Make data. X = np.arange( - 5 , 5 , 0.25 ) Y = np.arange( - 5 , 5 , 0.25 ) X, Y = np.meshgrid(X, Y) R = np.sqrt(X * * 2 + Y * * 2 ) Z = np.sin(R) # Plot the surface. surf = ax.plot_surface(X, Y, Z, cmap = cm.coolwarm, linewidth = 0 , antialiased = False ) # Customize the z axis. ax.set_zlim( - 1.01 , 1.01 ) ax.zaxis.set_major_locator(LinearLocator( 10 )) ax.zaxis.set_major_formatter(FormatStrFormatter( '%.02f' )) # Add a color bar which maps values to colors. fig.colorbar(surf, shrink = 0.5 , aspect = 5 ) plt.show() |
六、三角表面图(Tri-Surface plots)
基本用法:
1 | ax.plot_trisurf( * args, * * kwargs) |
- X,Y,Z:数据
- 其他参数类似surface-plot
code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np n_radii = 8 n_angles = 36 # Make radii and angles spaces (radius r=0 omitted to eliminate duplication). radii = np.linspace( 0.125 , 1.0 , n_radii) angles = np.linspace( 0 , 2 * np.pi, n_angles, endpoint = False ) # Repeat all angles for each radius. angles = np.repeat(angles[..., np.newaxis], n_radii, axis = 1 ) # Convert polar (radii, angles) coords to cartesian (x, y) coords. # (0, 0) is manually added at this stage, so there will be no duplicate # points in the (x, y) plane. x = np.append( 0 , (radii * np.cos(angles)).flatten()) y = np.append( 0 , (radii * np.sin(angles)).flatten()) # Compute z to make the pringle surface. z = np.sin( - x * y) fig = plt.figure() ax = fig.gca(projection = '3d' ) ax.plot_trisurf(x, y, z, linewidth = 0.2 , antialiased = True ) plt.show() |
七、等高线(Contour plots)
基本用法:
1 | ax.contour(X, Y, Z, * args, * * kwargs) |
code:
1 2 3 4 5 6 7 8 9 10 11 | from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt from matplotlib import cm fig = plt.figure() ax = fig.add_subplot( 111 , projection = '3d' ) X, Y, Z = axes3d.get_test_data( 0.05 ) cset = ax.contour(X, Y, Z, cmap = cm.coolwarm) ax.clabel(cset, fontsize = 9 , inline = 1 ) plt.show() |
二维的等高线,同样可以配合三维表面图一起绘制:
code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | from mpl_toolkits.mplot3d import axes3d from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt from matplotlib import cm fig = plt.figure() ax = fig.gca(projection = '3d' ) X, Y, Z = axes3d.get_test_data( 0.05 ) ax.plot_surface(X, Y, Z, rstride = 8 , cstride = 8 , alpha = 0.3 ) cset = ax.contour(X, Y, Z, zdir = 'z' , offset = - 100 , cmap = cm.coolwarm) cset = ax.contour(X, Y, Z, zdir = 'x' , offset = - 40 , cmap = cm.coolwarm) cset = ax.contour(X, Y, Z, zdir = 'y' , offset = 40 , cmap = cm.coolwarm) ax.set_xlabel( 'X' ) ax.set_xlim( - 40 , 40 ) ax.set_ylabel( 'Y' ) ax.set_ylim( - 40 , 40 ) ax.set_zlabel( 'Z' ) ax.set_zlim( - 100 , 100 ) plt.show() |
也可以是三维等高线在二维平面的投影:
code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt from matplotlib import cm fig = plt.figure() ax = fig.gca(projection = '3d' ) X, Y, Z = axes3d.get_test_data( 0.05 ) ax.plot_surface(X, Y, Z, rstride = 8 , cstride = 8 , alpha = 0.3 ) cset = ax.contourf(X, Y, Z, zdir = 'z' , offset = - 100 , cmap = cm.coolwarm) cset = ax.contourf(X, Y, Z, zdir = 'x' , offset = - 40 , cmap = cm.coolwarm) cset = ax.contourf(X, Y, Z, zdir = 'y' , offset = 40 , cmap = cm.coolwarm) ax.set_xlabel( 'X' ) ax.set_xlim( - 40 , 40 ) ax.set_ylabel( 'Y' ) ax.set_ylim( - 40 , 40 ) ax.set_zlabel( 'Z' ) ax.set_zlim( - 100 , 100 ) plt.show() |
八、Bar plots(条形图)
基本用法:
1 | ax.bar(left, height, zs = 0 , zdir = 'z' , * args, * * kwargs |
- x,y,zs = z,数据
- zdir:条形图平面化的方向,具体可以对应代码理解。
code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np fig = plt.figure() ax = fig.add_subplot( 111 , projection = '3d' ) for c, z in zip ([ 'r' , 'g' , 'b' , 'y' ], [ 30 , 20 , 10 , 0 ]): xs = np.arange( 20 ) ys = np.random.rand( 20 ) # You can provide either a single color or an array. To demonstrate this, # the first bar of each set will be colored cyan. cs = [c] * len (xs) cs[ 0 ] = 'c' ax.bar(xs, ys, zs = z, zdir = 'y' , color = cs, alpha = 0.8 ) ax.set_xlabel( 'X' ) ax.set_ylabel( 'Y' ) ax.set_zlabel( 'Z' ) plt.show() |
九、子图绘制(subplot)
A-不同的2-D图形,分布在3-D空间,其实就是投影空间不空,对应code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt fig = plt.figure() ax = fig.gca(projection = '3d' ) # Plot a sin curve using the x and y axes. x = np.linspace( 0 , 1 , 100 ) y = np.sin(x * 2 * np.pi) / 2 + 0.5 ax.plot(x, y, zs = 0 , zdir = 'z' , label = 'curve in (x,y)' ) # Plot scatterplot data (20 2D points per colour) on the x and z axes. colors = ( 'r' , 'g' , 'b' , 'k' ) x = np.random.sample( 20 * len (colors)) y = np.random.sample( 20 * len (colors)) c_list = [] for c in colors: c_list.append([c] * 20 ) # By using zdir='y', the y value of these points is fixed to the zs value 0 # and the (x,y) points are plotted on the x and z axes. ax.scatter(x, y, zs = 0 , zdir = 'y' , c = c_list, label = 'points in (x,z)' ) # Make legend, set axes limits and labels ax.legend() ax.set_xlim( 0 , 1 ) ax.set_ylim( 0 , 1 ) ax.set_zlim( 0 , 1 ) ax.set_xlabel( 'X' ) ax.set_ylabel( 'Y' ) ax.set_zlabel( 'Z' ) |
B-子图Subplot用法
与MATLAB不同的是,如果一个四子图效果,如:
MATLAB:
123subplot(
2
,
2
,
1
)
subplot(
2
,
2
,
2
)
subplot(
2
,
2
,[
3
,
4
])
Python:
123subplot(
2
,
2
,
1
)
subplot(
2
,
2
,
2
)
subplot(
2
,
1
,
2
)
code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.axes3d import Axes3D, get_test_data from matplotlib import cm import numpy as np # set up a figure twice as wide as it is tall fig = plt.figure(figsize = plt.figaspect( 0.5 )) #=============== # First subplot #=============== # set up the axes for the first plot ax = fig.add_subplot( 2 , 2 , 1 , projection = '3d' ) # plot a 3D surface like in the example mplot3d/surface3d_demo X = np.arange( - 5 , 5 , 0.25 ) Y = np.arange( - 5 , 5 , 0.25 ) X, Y = np.meshgrid(X, Y) R = np.sqrt(X * * 2 + Y * * 2 ) Z = np.sin(R) surf = ax.plot_surface(X, Y, Z, rstride = 1 , cstride = 1 , cmap = cm.coolwarm, linewidth = 0 , antialiased = False ) ax.set_zlim( - 1.01 , 1.01 ) fig.colorbar(surf, shrink = 0.5 , aspect = 10 ) #=============== # Second subplot #=============== # set up the axes for the second plot ax = fig.add_subplot( 2 , 1 , 2 , projection = '3d' ) # plot a 3D wireframe like in the example mplot3d/wire3d_demo X, Y, Z = get_test_data( 0.05 ) ax.plot_wireframe(X, Y, Z, rstride = 10 , cstride = 10 ) plt.show() |
补充:
文本注释的基本用法:
code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt fig = plt.figure() ax = fig.gca(projection = '3d' ) # Demo 1: zdir zdirs = ( None , 'x' , 'y' , 'z' , ( 1 , 1 , 0 ), ( 1 , 1 , 1 )) xs = ( 1 , 4 , 4 , 9 , 4 , 1 ) ys = ( 2 , 5 , 8 , 10 , 1 , 2 ) zs = ( 10 , 3 , 8 , 9 , 1 , 8 ) for zdir, x, y, z in zip (zdirs, xs, ys, zs): label = '(%d, %d, %d), dir=%s' % (x, y, z, zdir) ax.text(x, y, z, label, zdir) # Demo 2: color ax.text( 9 , 0 , 0 , "red" , color = 'red' ) # Demo 3: text2D # Placement 0, 0 would be the bottom left, 1, 1 would be the top right. ax.text2D( 0.05 , 0.95 , "2D Text" , transform = ax.transAxes) # Tweaking display region and labels ax.set_xlim( 0 , 10 ) ax.set_ylim( 0 , 10 ) ax.set_zlim( 0 , 10 ) ax.set_xlabel( 'X axis' ) ax.set_ylabel( 'Y axis' ) ax.set_zlabel( 'Z axis' ) plt.show() |
参考:
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!
· 字符编码:从基础到乱码解决