OpenCV之cvAddWeighted直接C语言实现版addWeighted,应对上下平滑融合拼接

关于OpenCV中的cvAddWeighted的介绍可参见《opencv中的cvAddWeighted函数

cvAddWeighted有个问题,它只能实现两张图片的直接融合,往往产生明显的融合边界,这在我的图像操作应用中不能满足要求,特别是那讨厌的边界,所以我准备改进之。下面直接贴上我的addWeighted

/************************************************************************/
// Author:xingrun
// Description:addWeighted自动根据设定参数完成融合,
//    一开始src1,src2的权值分别为1,0,最后权值分别变成0,1,融合效果较好,无明显边界
// Time:2014-1-6 20:50:03
// Param:暂未实现通道为1的图片融合处理
/************************************************************************/
void addWeighted(const IplImage *src1,const IplImage* src2,IplImage* dst,double gama = 0)
{			
	CV_Assert(src1->depth == src2->depth);  
	CV_Assert(dst->depth == src2->depth); 
	CV_Assert(src1->nChannels == src2->nChannels);  
	CV_Assert(dst->nChannels == src2->nChannels); 	
	CvRect rect1 = cvGetImageROI(src1);
	CvRect rect2 = cvGetImageROI(src2);
	CvRect dstRect = cvGetImageROI(dst);
	CV_Assert(rect1.width == rect2.width && rect1.height == rect2.height);
	CV_Assert(rect2.width == dstRect.width && rect2.height == dstRect.height);
	int c,r,l;//c--Channel,r-Row,l-coLumn
	int val,val1,val2;	
	double alpha = 0;
	double beta = 0;
	if(dst->nChannels==3)
	{
		for (c = 0; c < 3; c++)
			for (r = dstRect.y; r < dstRect.y+dstRect.height; r++)
				for (l = dstRect.x; l < dstRect.x+dstRect.width; l++)
				{
					val1 = ((uchar*)(src1->imageData + src1->widthStep*(rect1.y+r-dstRect.y)))[(rect1.x+l-dstRect.x)*3+c];
					val2 = ((uchar*)(src2->imageData + src2->widthStep*(rect2.y+r-dstRect.y)))[(rect2.x+l-dstRect.x)*3+c];
					alpha = (double)(dstRect.y+dstRect.height-1-r)/(dstRect.height-1);
					beta = 1 -alpha;
					val =  (int)(val1*alpha + val2*beta + gama); 
					if(val<0)
						val=0;
					else if(val>255)
						val=255;
					((uchar*)(dst->imageData + dst->widthStep*r))[l*3+c] = (uchar)val;
				}
	}
	else if(dst->nChannels==1)
	{
		//留待实现
	}		
}

上面代码中,参数alpha和beta是根据高度(或row)来自动调整的,所以我的这个函数适合上下融合图片,如果需要左右融合或者特定形状融合的话,可以增加传入参数来扩展功能。  

下面分别使用cvAddWeighted和addWeighted对比一下上下融合的结果。

源图片:

21.jpg

22.jpg

在MFC中使用以下代码:

void CMytestDlg::OnBnClickedBtnAddWeightedComp()
{
	IplImage *src1 = cvLoadImage("dataset\\21.jpg");
	IplImage *src2 = cvLoadImage("dataset\\22.jpg");
	IplImage *dst_cvAddWeighted = NULL;
	IplImage *dst_addWeighted = NULL;
	IplImage *weightImg = NULL;
	if (src1 && src2)
	{
		dst_cvAddWeighted = cvCreateImage(cvSize(src1->width,src1->height/2+src2->height),src1->depth,src1->nChannels);
		dst_addWeighted = cvCreateImage(cvSize(src1->width,src1->height/2+src2->height),src1->depth,src1->nChannels);
		weightImg = cvCreateImage(cvSize(src1->width,src1->height/2),src1->depth,src1->nChannels);
		if (dst_cvAddWeighted && dst_addWeighted)
		{
			cvNamedWindow("cvAddWeighted");
			cvNamedWindow("addWeighted");
			//融合中间部分
			cvSetImageROI(src1,cvRect(0,src1->height/2,src1->width,src1->height/2));
			cvSetImageROI(src2,cvRect(0,0,src1->width,src1->height/2));
			cvSetImageROI(dst_cvAddWeighted,cvRect(0,src1->height/2,src1->width,src1->height/2));
			cvSetImageROI(dst_addWeighted,cvRect(0,src1->height/2,src1->width,src1->height/2));
			cvAddWeighted(src1,0.5,src2,0.5,0,dst_cvAddWeighted);
			addWeighted(src1,src2,dst_addWeighted);
			cvResetImageROI(src1);
			cvResetImageROI(src2);
			cvResetImageROI(dst_cvAddWeighted);
			cvResetImageROI(dst_addWeighted);
			//拷贝上部分
			cvSetImageROI(src1,cvRect(0,0,src1->width,src1->height/2));
			cvSetImageROI(dst_cvAddWeighted,cvRect(0,0,src1->width,src1->height/2));
			cvSetImageROI(dst_addWeighted,cvRect(0,0,src1->width,src1->height/2));
			cvCopy(src1,dst_cvAddWeighted);
			cvCopy(src1,dst_addWeighted);
			cvResetImageROI(src1);
			cvResetImageROI(dst_cvAddWeighted);
			cvResetImageROI(dst_addWeighted);
			//拷贝下面部分
			cvSetImageROI(src2,cvRect(0,src1->height/2,src1->width,src2->height - src1->height/2));
			cvSetImageROI(dst_cvAddWeighted,cvRect(0,src1->height,src1->width,src2->height - src1->height/2));
			cvSetImageROI(dst_addWeighted,cvRect(0,src1->height,src1->width,src2->height - src1->height/2));
			cvCopy(src2,dst_cvAddWeighted);
			cvCopy(src2,dst_addWeighted);
			cvResetImageROI(src2);
			cvResetImageROI(dst_cvAddWeighted);
			cvResetImageROI(dst_addWeighted);
			//显示
			cvShowImage("cvAddWeighted",dst_cvAddWeighted);
			cvWaitKey(10);			
			cvShowImage("addWeighted",dst_addWeighted);
			cvWaitKey(10);
			//保存
			cvSaveImage("cvAddWeighted.jpg",dst_cvAddWeighted);
			cvSaveImage("addWeighted.jpg",dst_addWeighted);
			//释放内存
			cvReleaseImage(&dst_cvAddWeighted);
			dst_cvAddWeighted = NULL;
			cvReleaseImage(&dst_addWeighted);
			dst_addWeighted = NULL;
			//cvDestroyAllWindows();
		}
		cvReleaseImage(&src1);
		src1 = NULL;
		cvReleaseImage(&src2);
		src2 = NULL;
	}
}

得到结果:

cvAddWeighted.jpg

addWeighted.jpg

细看结果,可发现cvAddWeighted.jpg中有明显的拼接痕迹,而在addWeighted.jpg不存在,效果明显。

 

 

posted @ 2014-01-06 21:55  xingrun  阅读(1977)  评论(0编辑  收藏  举报