akshare股市新闻情绪判断
1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | # -*- coding: utf-8 -*- import time import akshare as ak from snownlp import SnowNLP # 使用snownlp stock_code = '603777' date = time.strftime( "%Y%m%d" , time.localtime()) stock_news_em_df = ak.stock_news_em(stock = stock_code) for i in stock_news_em_df.values[:, 1 ]: text = str (i) # text = u'中国人是好人' s = SnowNLP(text) for sentence in s.sentences: print (sentence, SnowNLP(sentence).sentences) print (s.sentiments) print (s.keywords( 3 )) print (s.summary( 3 )) # 小于0.4的为消极,否则为积极 if s.sentiments< 0.4 : print ( '##########消极' ,i) elif s.sentiments> = 0.4 : print ( '##########积极' ,i) |
2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | # 使用nltk # from nltk.sentiment.vader import SentimentIntensityAnalyzer as sia # import nltk # import time # import akshare as ak # import jieba as jb # # # nltk.set_proxy('SYSTEM PROXY') # # nltk.download('vader_lexicon') # # stock_code='603777' # date=time.strftime("%Y%m%d", time.localtime()) # # sentences = ['This is the worst lunch I ever had!', # # 'This is the best lunch I have ever had!!', # # 'I don\'t like this lunch.', # # 'I eat food for lunch.', # # 'Red is a color.', # # 'A really bad, horrible book, the plot was .'] # # '''每日快讯''' # # stock_zh_a_alerts_cls_df = ak.stock_zh_a_alerts_cls() # # '''当日最近 4 小时内的新闻资讯数据''' # # js_news_df = ak.js_news(timestamp=date + "11:27:18") # '''个股当日最近 20 条新闻资讯数据''' # stock_news_em_df = ak.stock_news_em(stock=stock_code) # sentences=[] # for i in stock_news_em_df.values[:,1]: # seg_list = jb.cut_for_search(i) # print(", ".join(seg_list)) # sentences.append(", ".join(seg_list)) # hal = sia() # for sentence in sentences: # print(sentence) # ps = hal.polarity_scores(sentence) # for k in sorted(ps): # print('\t{}: {:>1.4}'.format(k, ps[k]), end=' ') # print() |
3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | # 使用fair # from flair.models import TextClassifier # from flair.data import Sentence # # sia = TextClassifier.load('en-sentiment') # # # def flair_prediction(x): # sentence = Sentence(x) # sia.predict(sentence) # score = sentence.labels[0] # if "POSITIVE" in str(score): # return "pos" # elif "NEGATIVE" in str(score): # return "neg" # else: # return "neu" # # flair_prediction('hahahahah') |
风雨兼程,前程可待!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具
2020-04-09 终于理解清楚attention,利用attention对黄金价格进行预测