Akshare 获取日线策略并发送邮件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import akshare as ak
import time
# import datetime
import numpy as np
from datetime import datetime, timedelta
import smtplib
from email.mime.text import MIMEText
from email.utils import formataddr
from email.message import EmailMessage
import logging
import os
 
nowtime = datetime.now()
 
 
day_nums = 1  # 使用前一天的收盘价数据做信号判断
stock_num = 1  # 买入评分最高的前stock_num只股票 可以修改
momentum_day = 20  # 最新动量参考最近momentum_day的
ref_stock = 'sh000300'  # 用ref_stock做择时计算的基础数据
N = 18  # 计算最新斜率slope,拟合度r2参考最近N天
M = 600  # 计算最新标准分zscore,rsrs_score参考最近M天
score_threshold = 0.7  # rsrs标准分指标阈值
 
 
 
def get_index_list(index_symbol='sh000068'):
    stocks2 = []
    stocks = ak.index_stock_hist(index_symbol).stock_code
    for stock in stocks[:]:
        if int(stock) < 100000:
            stock = 'sz' + stock
        else:
            stock = 'sh' + stock
        stocks2.append(stock)
    return stocks2
 
 
stock_pool = get_index_list()
 
 
# 找到有交易信号的股票,为之后交易进行准备
 
 
# 动量因子:由收益率动量改为相对MA90均线的乖离动量
def get_rank(stock_pool):
    rank, biasN = [], 90
    for stock in stock_pool:
        # print(stock)
        from_date = '2010-01-01'
        from_date = datetime.strptime(from_date, "%Y-%m-%d")
        day_nums = 1
        current_dt = time.strftime("%Y-%m-%d", time.localtime())
        current_dt = datetime.strptime(current_dt, '%Y-%m-%d')
        previous_date = current_dt - timedelta(days=day_nums)
        #         data = jq.get_price(stock, end_date=previous_date, count=biasN +
        #                             momentum_day, frequency='daily', fields=['close'])
        try:
            data = ak.stock_zh_a_daily(symbol=stock, start_date=from_date, end_date=previous_date)
        except:
            pass
        # print('2222',data.head())
        bias = np.array((data.close / data.close.rolling(biasN).mean())[-momentum_day:])  # 乖离因子
        #         print(bias)
        #         print(bias[0])
        score = np.polyfit(np.arange(momentum_day), bias / bias[0], 1)[0].real  # 乖离动量拟合
        rank.append([stock, score])
    rank.sort(key=lambda x: x[-1], reverse=True)
    return rank[0]
 
 
# 线性回归:复现statsmodels的get_OLS函数
def get_ols(x, y):
    slope, intercept = np.polyfit(x, y, 1)
    r2 = 1 - (sum((y - (slope * x + intercept)) ** 2) / ((len(y) - 1) * np.var(y, ddof=1)))
    return (intercept, slope, r2)
 
 
def get_zscore(slope_series):
    mean = np.mean(slope_series)
    std = np.std(slope_series)
    return (slope_series[-1] - mean) / std
 
 
# 择时过程 ----->--------------------------------------------
def initial_slope_series():
    current_dt = time.strftime("%Y-%m-%d", time.localtime())
    current_dt = datetime.strptime(current_dt, '%Y-%m-%d')
    from_date = '2010-01-01'
    from_date = datetime.strptime(from_date, "%Y-%m-%d")
    previous_date = current_dt - timedelta(days=day_nums)
    data = ak.stock_zh_index_daily(symbol=ref_stock)
    data['date'] = data['date'].apply(lambda x: str(x))
    data['date'] = data['date'].apply(lambda x: datetime.strptime(str(x), '%Y-%m-%d'))
    data = data[(data['date'] >= from_date) & (data['date'] <= previous_date)]
    return [get_ols(data.low[i:i + N], data.high[i:i + N])[1] for i in range(M)]
 
 
# 只看RSRS因子值作为买入、持有和清仓依据,前版本还加入了移动均线的上行作为条件
def get_timing_signal(stock):
    current_dt = time.strftime("%Y-%m-%d", time.localtime())
    current_dt = datetime.strptime(current_dt, '%Y-%m-%d')
    previous_date = current_dt - timedelta(days=day_nums)
    from_date = '2010-01-01'
    from_date = datetime.strptime(from_date, "%Y-%m-%d")
    data = ak.stock_zh_index_daily(symbol=ref_stock)
    data['date'] = data['date'].apply(lambda x: str(x))
    data['date'] = data['date'].apply(lambda x: datetime.strptime(x, '%Y-%m-%d'))
    data['date'] = data['date'].apply(lambda x: x.to_pydatetime())
    # data = data[data['date']>=from_date & data['date']<= previous_date]
    data = data[(data['date'] >= from_date) & (data['date'] <= previous_date)]
    intercept, slope, r2 = get_ols(data.low, data.high)
    slope_series.append(slope)
    rsrs_score = get_zscore(slope_series[-M:]) * r2
    print('rsrs_score {:.3f}'.format(rsrs_score))
    if (rsrs_score > score_threshold):
        return "BUY"
    elif (rsrs_score < -score_threshold):
        return "SELL"
    else:
        return "KEEP"
 
 
# slope_series = initial_slope_series()[:-1]  # 除去回测第一天的 slope ,避免运行时重复加入
slope_series = initial_slope_series()[:-1]
 
 
def my_trade():
    # print(stock_pool)
    # print(get_rank(stock_pool))
    check_out_list = get_rank(stock_pool)
    timing_signal = get_timing_signal(ref_stock)
    message = ""
    if len(check_out_list) > 0:
        each_check_out = check_out_list[0]
        #         security_info = jq.get_security_info(each_check_out)
        #         stock_name = security_info.display_name
        #         stock_code = each_check_out
        print('今日自选股:{}({})'.format(each_check_out, each_check_out))
        if timing_signal == 'SELL':
            #             for stock in list(positions.keys()):
            #                 close_position(stock)
            #                 message = '清仓!卖卖卖!'
            #                 message += "\r\n\r\n".join(positions.keys())
            #                 positions.clear()
            #                 print('今日择时信号:{}'.format(timing_signal))
            pass
        else:
            message = "今日自选股:{}({})".format(each_check_out, each_check_out)
            # adjust_position([each_check_out])
        print(message)
        sendMail(message)
 
 
def mail(message):
    ret = True
 
    try:
 
        # 定义SMTP邮件服务器地址
        smtp_server = 'smtp.qq.com'
        # 邮件发送人邮箱
        from_addr = 'x x x x x x x@qq.com'  # 自己的邮想
        # 邮件发送人邮箱密码
        password = 'xxxxxxxx  # 邮箱密码
        # 邮件接收人
        to_addr = 'xxxxxxxxxx@qq.com'  # 测试接收邮件地址邮箱
 
        # 创建SMTP连接
        conn = smtplib.SMTP_SSL(smtp_server, 465)
        # 设计调试级别
        conn.set_debuglevel(1)
        # 登录邮箱
        conn.login(from_addr, password)
        # 创建邮件内容对象
        msg = EmailMessage()
        # 设置邮件内容
        msg.set_content('{}'.format(message), 'plain', 'utf-8')
        msg['Subject'] = '现在时间为:{}'.format(nowtime)
        msg['From'] = '星涅'
        msg['To'] = '我挚爱的朋友'
        # 发送邮件
        conn.sendmail(from_addr, [to_addr], msg.as_string())
        # 退出连接
        conn.quit()
 
 
 
    except Exception as e:  # 如果 try 中的语句没有执行,则会执行下面的 ret = False
        ret = False
        print(e)
 
    return ret
 
 
def sendMail(message):
    ret = 0
    for _ in range(10):
        if ret:
            # 邮件发送成功推出
            break
        else:
            # 没有发送成功或失败继续
            ret = mail(message)
            time.sleep(1)
 
 
if __name__ == '__main__':
    # positions["159928.XSHE"] = 100
    my_trade()

 

posted @   星涅爱别离  阅读(2967)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具
点击右上角即可分享
微信分享提示