Akshare 获取日线策略并发送邮件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | import akshare as ak import time # import datetime import numpy as np from datetime import datetime, timedelta import smtplib from email.mime.text import MIMEText from email.utils import formataddr from email.message import EmailMessage import logging import os nowtime = datetime.now() day_nums = 1 # 使用前一天的收盘价数据做信号判断 stock_num = 1 # 买入评分最高的前stock_num只股票 可以修改 momentum_day = 20 # 最新动量参考最近momentum_day的 ref_stock = 'sh000300' # 用ref_stock做择时计算的基础数据 N = 18 # 计算最新斜率slope,拟合度r2参考最近N天 M = 600 # 计算最新标准分zscore,rsrs_score参考最近M天 score_threshold = 0.7 # rsrs标准分指标阈值 def get_index_list(index_symbol = 'sh000068' ): stocks2 = [] stocks = ak.index_stock_hist(index_symbol).stock_code for stock in stocks[:]: if int (stock) < 100000 : stock = 'sz' + stock else : stock = 'sh' + stock stocks2.append(stock) return stocks2 stock_pool = get_index_list() # 找到有交易信号的股票,为之后交易进行准备 # 动量因子:由收益率动量改为相对MA90均线的乖离动量 def get_rank(stock_pool): rank, biasN = [], 90 for stock in stock_pool: # print(stock) from_date = '2010-01-01' from_date = datetime.strptime(from_date, "%Y-%m-%d" ) day_nums = 1 current_dt = time.strftime( "%Y-%m-%d" , time.localtime()) current_dt = datetime.strptime(current_dt, '%Y-%m-%d' ) previous_date = current_dt - timedelta(days = day_nums) # data = jq.get_price(stock, end_date=previous_date, count=biasN + # momentum_day, frequency='daily', fields=['close']) try : data = ak.stock_zh_a_daily(symbol = stock, start_date = from_date, end_date = previous_date) except : pass # print('2222',data.head()) bias = np.array((data.close / data.close.rolling(biasN).mean())[ - momentum_day:]) # 乖离因子 # print(bias) # print(bias[0]) score = np.polyfit(np.arange(momentum_day), bias / bias[ 0 ], 1 )[ 0 ].real # 乖离动量拟合 rank.append([stock, score]) rank.sort(key = lambda x: x[ - 1 ], reverse = True ) return rank[ 0 ] # 线性回归:复现statsmodels的get_OLS函数 def get_ols(x, y): slope, intercept = np.polyfit(x, y, 1 ) r2 = 1 - ( sum ((y - (slope * x + intercept)) * * 2 ) / (( len (y) - 1 ) * np.var(y, ddof = 1 ))) return (intercept, slope, r2) def get_zscore(slope_series): mean = np.mean(slope_series) std = np.std(slope_series) return (slope_series[ - 1 ] - mean) / std # 择时过程 ----->-------------------------------------------- def initial_slope_series(): current_dt = time.strftime( "%Y-%m-%d" , time.localtime()) current_dt = datetime.strptime(current_dt, '%Y-%m-%d' ) from_date = '2010-01-01' from_date = datetime.strptime(from_date, "%Y-%m-%d" ) previous_date = current_dt - timedelta(days = day_nums) data = ak.stock_zh_index_daily(symbol = ref_stock) data[ 'date' ] = data[ 'date' ]. apply ( lambda x: str (x)) data[ 'date' ] = data[ 'date' ]. apply ( lambda x: datetime.strptime( str (x), '%Y-%m-%d' )) data = data[(data[ 'date' ] > = from_date) & (data[ 'date' ] < = previous_date)] return [get_ols(data.low[i:i + N], data.high[i:i + N])[ 1 ] for i in range (M)] # 只看RSRS因子值作为买入、持有和清仓依据,前版本还加入了移动均线的上行作为条件 def get_timing_signal(stock): current_dt = time.strftime( "%Y-%m-%d" , time.localtime()) current_dt = datetime.strptime(current_dt, '%Y-%m-%d' ) previous_date = current_dt - timedelta(days = day_nums) from_date = '2010-01-01' from_date = datetime.strptime(from_date, "%Y-%m-%d" ) data = ak.stock_zh_index_daily(symbol = ref_stock) data[ 'date' ] = data[ 'date' ]. apply ( lambda x: str (x)) data[ 'date' ] = data[ 'date' ]. apply ( lambda x: datetime.strptime(x, '%Y-%m-%d' )) data[ 'date' ] = data[ 'date' ]. apply ( lambda x: x.to_pydatetime()) # data = data[data['date']>=from_date & data['date']<= previous_date] data = data[(data[ 'date' ] > = from_date) & (data[ 'date' ] < = previous_date)] intercept, slope, r2 = get_ols(data.low, data.high) slope_series.append(slope) rsrs_score = get_zscore(slope_series[ - M:]) * r2 print ( 'rsrs_score {:.3f}' . format (rsrs_score)) if (rsrs_score > score_threshold): return "BUY" elif (rsrs_score < - score_threshold): return "SELL" else : return "KEEP" # slope_series = initial_slope_series()[:-1] # 除去回测第一天的 slope ,避免运行时重复加入 slope_series = initial_slope_series()[: - 1 ] def my_trade(): # print(stock_pool) # print(get_rank(stock_pool)) check_out_list = get_rank(stock_pool) timing_signal = get_timing_signal(ref_stock) message = "" if len (check_out_list) > 0 : each_check_out = check_out_list[ 0 ] # security_info = jq.get_security_info(each_check_out) # stock_name = security_info.display_name # stock_code = each_check_out print ( '今日自选股:{}({})' . format (each_check_out, each_check_out)) if timing_signal = = 'SELL' : # for stock in list(positions.keys()): # close_position(stock) # message = '清仓!卖卖卖!' # message += "\r\n\r\n".join(positions.keys()) # positions.clear() # print('今日择时信号:{}'.format(timing_signal)) pass else : message = "今日自选股:{}({})" . format (each_check_out, each_check_out) # adjust_position([each_check_out]) print (message) sendMail(message) def mail(message): ret = True try : # 定义SMTP邮件服务器地址 smtp_server = 'smtp.qq.com' # 邮件发送人邮箱 from_addr = 'x x x x x x x@qq.com' # 自己的邮想 # 邮件发送人邮箱密码 password = 'xxxxxxxx # 邮箱密码 # 邮件接收人 to_addr = 'xxxxxxxxxx@qq.com' # 测试接收邮件地址邮箱 # 创建SMTP连接 conn = smtplib.SMTP_SSL(smtp_server, 465 ) # 设计调试级别 conn.set_debuglevel( 1 ) # 登录邮箱 conn.login(from_addr, password) # 创建邮件内容对象 msg = EmailMessage() # 设置邮件内容 msg.set_content( '{}' . format (message), 'plain' , 'utf-8' ) msg[ 'Subject' ] = '现在时间为:{}' . format (nowtime) msg[ 'From' ] = '星涅' msg[ 'To' ] = '我挚爱的朋友' # 发送邮件 conn.sendmail(from_addr, [to_addr], msg.as_string()) # 退出连接 conn.quit() except Exception as e: # 如果 try 中的语句没有执行,则会执行下面的 ret = False ret = False print (e) return ret def sendMail(message): ret = 0 for _ in range ( 10 ): if ret: # 邮件发送成功推出 break else : # 没有发送成功或失败继续 ret = mail(message) time.sleep( 1 ) if __name__ = = '__main__' : # positions["159928.XSHE"] = 100 my_trade() |
风雨兼程,前程可待!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具