NMI计算
NMI计算
NMI(Normalized Mutual Information)标准化互信息,常用在聚类中,度量两个聚类结果的相近程度。是社区发现(community detection)的重要衡量指标,基本可以比较客观地评价出一个社区划分与标准划分之间相比的准确度。NMI的值域是0到1,越高代表划分得越准。

# -*- coding:utf-8 -*- ''' Created on 2017年10月28日 @summary: 利用Python实现NMI计算 @author: dreamhome ''' import math import numpy as np from sklearn import metrics def NMI(A,B): #样本点数 total = len(A) A_ids = set(A) B_ids = set(B) #互信息计算 MI = 0 eps = 1.4e-45 for idA in A_ids: for idB in B_ids: idAOccur = np.where(A==idA) idBOccur = np.where(B==idB) idABOccur = np.intersect1d(idAOccur,idBOccur) px = 1.0*len(idAOccur[0])/total py = 1.0*len(idBOccur[0])/total pxy = 1.0*len(idABOccur)/total MI = MI + pxy*math.log(pxy/(px*py)+eps,2) # 标准化互信息 Hx = 0 for idA in A_ids: idAOccurCount = 1.0*len(np.where(A==idA)[0]) Hx = Hx - (idAOccurCount/total)*math.log(idAOccurCount/total+eps,2) Hy = 0 for idB in B_ids: idBOccurCount = 1.0*len(np.where(B==idB)[0]) Hy = Hy - (idBOccurCount/total)*math.log(idBOccurCount/total+eps,2) MIhat = 2.0*MI/(Hx+Hy) return MIhat if __name__ == '__main__': A = np.array([1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3]) B = np.array([1,2,1,1,1,1,1,2,2,2,2,3,1,1,3,3,3]) print NMI(A,B) print metrics.normalized_mutual_info_score(A,B) 原文:https://blog.csdn.net/DreamHome_S/article/details/78379635

# coding=utf-8 import numpy as np import math def NMI(A,B): # len(A) should be equal to len(B) total = len(A) A_ids = set(A) B_ids = set(B) #Mutual information MI = 0 eps = 1.4e-45 for idA in A_ids: for idB in B_ids: idAOccur = np.where(A==idA) idBOccur = np.where(B==idB) idABOccur = np.intersect1d(idAOccur,idBOccur) px = 1.0*len(idAOccur[0])/total py = 1.0*len(idBOccur[0])/total pxy = 1.0*len(idABOccur)/total MI = MI + pxy*math.log(pxy/(px*py)+eps,2) # Normalized Mutual information Hx = 0 for idA in A_ids: idAOccurCount = 1.0*len(np.where(A==idA)[0]) Hx = Hx - (idAOccurCount/total)*math.log(idAOccurCount/total+eps,2) Hy = 0 for idB in B_ids: idBOccurCount = 1.0*len(np.where(B==idB)[0]) Hy = Hy - (idBOccurCount/total)*math.log(idBOccurCount/total+eps,2) MIhat = 2.0*MI/(Hx+Hy) return MIhat if __name__ == '__main__': A = np.array([1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3]) B = np.array([1,2,1,1,1,1,1,2,2,2,2,3,1,1,3,3,3]) print (NMI(A,B))
结果:0.36456
自己编写了一个,同时做了排序处理
# coding=utf-8 import numpy as np import math import operator def NMI(A,B): # len(A) should be equal to len(B) total = len(A) A_ids = set(A) B_ids = set(B) #Mutual information MI = 0 eps = 1.4e-45 for idA in A_ids: for idB in B_ids: idAOccur = np.where(A==idA) idBOccur = np.where(B==idB) idABOccur = np.intersect1d(idAOccur,idBOccur) px = 1.0*len(idAOccur[0])/total py = 1.0*len(idBOccur[0])/total pxy = 1.0*len(idABOccur)/total MI = MI + pxy*math.log(pxy/(px*py)+eps,2) # Normalized Mutual information Hx = 0 for idA in A_ids: idAOccurCount = 1.0*len(np.where(A==idA)[0]) Hx = Hx - (idAOccurCount/total)*math.log(idAOccurCount/total+eps,2) Hy = 0 for idB in B_ids: idBOccurCount = 1.0*len(np.where(B==idB)[0]) Hy = Hy - (idBOccurCount/total)*math.log(idBOccurCount/total+eps,2) MIhat = 2.0*MI/(Hx+Hy) return MIhat if __name__ == '__main__': A = np.array([1,1,1]) B = np.array([2,3,4]) C = np.array([1,1,6]) print(NMI(A,B)) m=[]#包含了位置的互信息 n=[]#只有互信息 dic={} q=1 m.append(NMI(A,B)) m.append(NMI(B,C)) m.append(NMI(A,C)) for i in m: dic['第{}个互信息'.format(q)]='{}'.format(i) q=q+1 print(dic) rankdata=sorted(dic.items(),key=operator.itemgetter(1),reverse=True) print(rankdata)
实验结果如图
风雨兼程,前程可待!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具