Algorithm
算法分析与代码实现
LCSS
最长公共子序列(Longest-Common-Subsequence)
核心代码
for (int i = 0; i < ArrayLengthA; ++i) { for (int j = 0; j < ArrayLengthB; ++j) { if (SequenceA[i].equals(SequenceB[j])) { Lcs[i + 1][j + 1] = Lcs[i][j] + 1; Flag[i + 1][j + 1] = 1; //1:ok 2:left 3:up }else if (Lcs[i + 1][j] > Lcs[i][j + 1]) { Lcs[i + 1][j + 1] = Lcs[i + 1][j]; Flag[i + 1][j + 1] = 2; }else { Lcs[i + 1][j + 1] = Lcs[i][j + 1]; Flag[i + 1][j + 1] = 3; } } }
序列的回溯
public void getLongestCommonSubsequence(int[][] Flag, String[] SequenceA, int LengthA, int LengthB) { if (Flag[LengthA][LengthB] == 1) { getLongestCommonSubsequence(Flag, SequenceA, LengthA - 1, LengthB - 1); this.LongestCommonSubsequence.add(SequenceA[LengthA - 1]); }else if (Flag[LengthA][LengthB] == 2) { getLongestCommonSubsequence(Flag, SequenceA, LengthA, LengthB - 1); }else if (Flag[LengthA][LengthB] == 3) { getLongestCommonSubsequence(Flag, SequenceA, LengthA - 1, LengthB); } }
算法过程分析
DTW
动态时间规划(Dynamic Time Warping)求解两序列最小距离
核心代码
for (int i = 0; i < LengthA; ++i) { for (int j = 0; j < LengthB; ++j) { if (i == 0 && j == 0) { this.SumDistance[i][j] = this.Distance[0][0]; DistanceTmp1 = 0.0; DistanceTmp2 = 0.0; DistanceTmp3 = 0.0; } if (i == 0 && j > 0) { DistanceTmp1 = 1000000.0; DistanceTmp2 = this.SumDistance[i][j - 1]; DistanceTmp3 = 1000000.0; } if (i > 0 && j == 0) { DistanceTmp1 = this.SumDistance[i - 1][j]; DistanceTmp2 = 1000000.0; DistanceTmp3 = 1000000.0; } if (i > 0 && j > 0) { DistanceTmp1 = this.SumDistance[i - 1][j]; DistanceTmp2 = this.SumDistance[i][j - 1]; DistanceTmp3 = this.SumDistance[i - 1][j - 1]; } this.SumDistance[i][j] = this.Distance[i][j] + Math.min(DistanceTmp1, Math.min(DistanceTmp2, DistanceTmp3)); } }
算法原理
算法过程分析
长串中寻找最长重复子串
不断将子串的串长增长,并向后移动起始位置进行匹配
核心代码
for (int i = 1; i < OriginalString.length; ++i) { for (int j = 0; j < OriginalString.length - i; ++j) { if (OriginalString[j].equals(OriginalString[i + j])) { TempLength++; } else { TempLength = 0; } if (TempLength > MaxLength) { MaxLength = TempLength; First = j - TempLength + 1; } if ((i + j + 1) == OriginalString.length) { TempLength = 0; } } }
算法过程分析
KMP
匹配模式主串,时间复杂度O(m+n)
核心代码
//next数组的构建
public void getNext(String[] StringP) { this.Next = new int[StringP.length]; this.Next[0] = -1; int PointerJ = 0; int PointerK = -1; while (PointerJ < StringP.length - 1) { if (PointerK == -1 || StringP[PointerJ] == StringP[PointerK]) { if (StringP[++PointerJ] == StringP[++PointerK]) { // 当两个字符相等时要跳过 this.Next[PointerJ] = this.Next[PointerK]; } else { this.Next[PointerJ] = PointerK; } } else { PointerK = this.Next[PointerK]; } } }
//模式匹配
while (PointerI < StringT.length && PointerJ < StringP.length) { if (PointerJ == -1 || StringT[PointerI] == StringP[PointerJ]) { // 当j为-1时,要移动的是i,当然j也要归0 PointerI++; PointerJ++; } else { PointerJ = this.Next[PointerJ]; } } if (PointerJ == StringP.length) { return PointerI - PointerJ; } else { return -1; }
算法原理以及过程分析