Codeforces Round #486 (Div. 3) CD
C. Equal Sums
You are given kk sequences of integers. The length of the ii-th sequence equals to nini.
You have to choose exactly two sequences ii and jj (i≠ji≠j) such that you can remove exactly one element in each of them in such a way that the sum of the changed sequence ii (its length will be equal to ni−1ni−1) equals to the sum of the changed sequence jj (its length will be equal to nj−1nj−1).
Note that it's required to remove exactly one element in each of the two chosen sequences.
Assume that the sum of the empty (of the length equals 00) sequence is 00.
The first line contains an integer kk (2≤k≤2⋅1052≤k≤2⋅105) — the number of sequences.
Then kk pairs of lines follow, each pair containing a sequence.
The first line in the ii-th pair contains one integer nini (1≤ni<2⋅1051≤ni<2⋅105) — the length of the ii-th sequence. The second line of the ii-th pair contains a sequence of nini integers ai,1,ai,2,…,ai,niai,1,ai,2,…,ai,ni.
The elements of sequences are integer numbers from −104−104 to 104104.
The sum of lengths of all given sequences don't exceed 2⋅1052⋅105, i.e. n1+n2+⋯+nk≤2⋅105n1+n2+⋯+nk≤2⋅105.
If it is impossible to choose two sequences such that they satisfy given conditions, print "NO" (without quotes). Otherwise in the first line print "YES" (without quotes), in the second line — two integers ii, xx (1≤i≤k,1≤x≤ni1≤i≤k,1≤x≤ni), in the third line — two integers jj, yy (1≤j≤k,1≤y≤nj1≤j≤k,1≤y≤nj). It means that the sum of the elements of the ii-th sequence without the element with index xx equals to the sum of the elements of the jj-th sequence without the element with index yy.
Two chosen sequences must be distinct, i.e. i≠ji≠j. You can print them in any order.
If there are multiple possible answers, print any of them.
2
5
2 3 1 3 2
6
1 1 2 2 2 1
YES
2 6
1 2
3
1
5
5
1 1 1 1 1
2
2 3
NO
4
6
2 2 2 2 2 2
5
2 2 2 2 2
3
2 2 2
5
2 2 2 2 2
YES
2 2
4 1
In the first example there are two sequences [2,3,1,3,2][2,3,1,3,2] and [1,1,2,2,2,1][1,1,2,2,2,1]. You can remove the second element from the first sequence to get [2,1,3,2][2,1,3,2] and you can remove the sixth element from the second sequence to get [1,1,2,2,2][1,1,2,2,2]. The sums of the both resulting sequences equal to 88, i.e. the sums are equal.
任选两个序列,两个序列都除去他们中的一个数,使的总和相同。
因为总和的数量不超过2e5 所以能全部用结构体保存。 有三个值。
假设第i个序列,第j个数。 那么sum是第i个序列总和减去第j个数的值,id是第几个数。kk是第几个序列。
那么排下序,找到相同的sum,然后在找不同的kk 存在就是YES 或者就是 NO。
1 #include <bits/stdc++.h> 2 #define ll long long 3 using namespace std; 4 const int N = 2e5+10; 5 ll k, len, x; 6 struct Nod{ 7 ll sum, id, kk; 8 Nod() { 9 id = kk = sum = -1; 10 } 11 }nod[N]; 12 ll a[N]; 13 bool cmp(const Nod &a, const Nod &b) { 14 if(a.sum != b.sum ) return a.sum < b.sum; 15 else return a.kk < b.kk; 16 } 17 int main() { 18 int n = 0; 19 scanf("%lld", &k); 20 for(int i = 1; i <= k; i ++) { 21 scanf("%lld", &len); 22 ll sum = 0; 23 for(int j = 1; j <= len; j ++) { 24 scanf("%lld", &a[j]); 25 sum += a[j]; 26 } 27 for(int j = 1; j <= len; j ++) { 28 nod[n].sum = sum - a[j]; 29 nod[n].kk = i; 30 nod[n++].id = j; 31 } 32 } 33 sort(nod,nod+n,cmp); 34 // for(int i = 0; i < n; i ++) { 35 // printf("%lld %lld %lld\n",nod[i].sum,nod[i].kk,nod[i].id); 36 // } 37 int l = 0, r = 1; 38 while(r < n) { 39 while(nod[l].sum != nod[r].sum && r+1 < n) { 40 l++;r++; 41 } 42 while(nod[l].sum == nod[r].sum && nod[r].sum == nod[r+1].sum) r++; 43 if(nod[l].sum == nod[r].sum && nod[l].kk != nod[r].kk) { 44 printf("YES\n"); 45 return 0*printf("%lld %lld\n%lld %lld\n",nod[l].kk,nod[l].id,nod[r].kk,nod[r].id); 46 } 47 r += 2; 48 l = r - 1; 49 } 50 printf("NO\n"); 51 return 0; 52 }