hdu 2276 Kiki & Little Kiki 2

Kiki & Little Kiki 2

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2915    Accepted Submission(s): 1546


Problem Description
There are n lights in a circle numbered from 1 to n. The left of light 1 is light n, and the left of light k (1< k<= n) is the light k-1.At time of 0, some of them turn on, and others turn off. 
Change the state of light i (if it's on, turn off it; if it is not on, turn on it) at t+1 second (t >= 0), if the left of light i is on !!! Given the initiation state, please find all lights’ state after M second. (2<= n <= 100, 1<= M<= 10^8)

 

 

Input
The input contains one or more data sets. The first line of each data set is an integer m indicate the time, the second line will be a string T, only contains '0' and '1' , and its length n will not exceed 100. It means all lights in the circle from 1 to n.
If the ith character of T is '1', it means the light i is on, otherwise the light is off.

 

 

Output
For each data set, output all lights' state at m seconds in one line. It only contains character '0' and '1.
 

 

Sample Input
1
0101111
10
100000001
 

 

Sample Output
1111000
001000010
 
有n盏灯,每秒后如果左边的等是开了,那么当前的灯就变成反状态,否则不变。
左边   原来   现在
1          0         1
1         1          0
0          1         1
0          0         0
 
现在=原来^左边    由于用加法公式才符合用矩阵快速幂
所以可以变成 现在 = (左边+原来)% 2
所以得到公式:
an                   1   1   .   .   .   0  0           an
an-1                0   1   1  .  .   .    0           an-1
 .                                      .                       .
 .             =                       .                       .
 .                                      .                       .
 a2                  0    0  .   .   .    1  1            a2
 a1                  1    0   .  .   .    0   1            a1
 
 1 #include <bits/stdc++.h>
 2 #define ll long long
 3 using namespace std;
 4 const int mod = 200907;
 5 const int N = 110;
 6 char str[N];
 7 int len, a[N];
 8 struct mat{
 9     ll m[N][N];
10     mat(){
11         memset(m, 0, sizeof(m));
12     }
13 };
14 
15 mat mul(mat &A, mat &B) {
16     mat C;
17     for(int i = 0; i < len; i ++) {
18         for(int j = 0; j < len; j ++) {
19             for(int k = 0; k < len; k ++) {
20                 C.m[i][j] = (C.m[i][j] + A.m[i][k]*B.m[k][j]) % 2;
21             }
22         }
23     }
24     return C;
25 }
26 
27 mat pow(mat A, int n) {
28     mat B;
29     for(int i = 0; i < len; i ++) B.m[i][i] = 1;
30     while(n) {
31         if(n&1) B = mul(B, A);
32         A = mul(A, A);
33         n >>= 1;
34     }
35     return B;
36 }
37 int main() {
38     int m;
39     while(scanf("%d%s",&m,str) != EOF){
40         memset(a, 0, sizeof(a));
41         len = strlen(str);
42         mat A;
43         for(int i = 0; i < len; i ++) {
44             A.m[i][i] = A.m[i][(i+1)%len] = 1;
45         }
46         A = pow(A, m);
47         for(int i = 0; i < len; i ++) {
48             for(int j = 0; j < len; j ++) {
49                 a[i] += A.m[len-i-1][j]*(str[(len-j-1)%len]-'0');
50             }
51         }
52         for(int i = 0; i < len; i ++) printf("%d",a[i]%2);
53         printf("\n");
54     }
55     return 0;
56 }

 

posted @ 2018-05-08 18:06  starry_sky  阅读(277)  评论(0编辑  收藏  举报