Codeforces Round #460 (Div. 2) D Substring
You are given a graph with n nodes and m directed edges. One lowercase letter is assigned to each node. We define a path's value as the number of the most frequently occurring letter. For example, if letters on a path are "abaca", then the value of that path is 3. Your task is find a path whose value is the largest.
The first line contains two positive integers n, m (1 ≤ n, m ≤ 300 000), denoting that the graph has n nodes and m directed edges.
The second line contains a string s with only lowercase English letters. The i-th character is the letter assigned to the i-th node.
Then m lines follow. Each line contains two integers x, y (1 ≤ x, y ≤ n), describing a directed edge from x to y. Note that x can be equal to y and there can be multiple edges between x and y. Also the graph can be not connected.
Output a single line with a single integer denoting the largest value. If the value can be arbitrarily large, output -1 instead.
5 4
abaca
1 2
1 3
3 4
4 5
3
6 6
xzyabc
1 2
3 1
2 3
5 4
4 3
6 4
-1
10 14
xzyzyzyzqx
1 2
2 4
3 5
4 5
2 6
6 8
6 5
2 10
3 9
10 9
4 6
1 10
2 8
3 7
4
In the first sample, the path with largest value is 1 → 3 → 4 → 5. The value is 3 because the letter 'a' appears 3 times.
有n个节点和m条边,图是有向的,每个节点有一个小写字符,求一条路径中出现相同字符最大的数量。
dfs+dp问题,dp[i][j]表示以i节点开始的路径中字母'a'+j出现的最大次数。然后j遍历0-26,就可以求出最大值了。
#include <bits/stdc++.h> using namespace std; const int N = 3e5+10; char str[N]; int n, m, x, y, ans; vector<int> vs[N]; int vis[N]; int dp[N][26]; void dfs(int u) { vis[u] = 1; dp[u][str[u]-'a'] = 1; for(int i = 0; i < vs[u].size(); i ++) { int v = vs[u][i]; if(vis[v] == 1) { printf("-1\n"); exit(0); } else{ if(!vis[v]) dfs(v); for(int j = 0; j < 26; j ++) { dp[u][j] = max(dp[u][j],dp[v][j]+(str[u]-'a' == j)); } } } vis[u] = 2; } int main() { ios::sync_with_stdio(false); cin >> n >> m; cin >> str+1; for(int i = 0; i < m; i ++) { cin >> x >> y; vs[x].push_back(y); } memset(vis,0,sizeof(vis)); memset(dp,0,sizeof(dp)); for(int i = 1; i <= n; i ++) { if(!vis[i]) { dfs(i); for(int j = 0; j < 26; j ++) { ans = max(ans,dp[i][j]); } } } cout << ans << endl; return 0; }