Frequent Subsets Problem

The frequent subset problem is defined as follows. Suppose U={1, 2,…\ldots…,N} is the universe, and S1S_{1}S1​​, S2S_{2}S2​​,…\ldots…,SMS_{M}SM​​ are MMM sets over UUU. Given a positive constant α\alphaα, 0<α≤10<\alpha \leq 10<α1, a subset BBB (B≠0B \neq 0B0) is α-frequent if it is contained in at least αM\alpha MαM sets of S1S_{1}S1​​, S2S_{2}S2​​,…\ldots…,SMS_{M}SM​​, i.e. ∣{i:B⊆Si}∣≥αM\left | \left \{ i:B\subseteq S_{i} \right \} \right | \geq \alpha M∣{i:B⊆S​i​​}∣≥αM. The frequent subset problem is to find all the subsets that are α-frequent. For example, let U={1,2,3,4,5}U=\{1, 2,3,4,5\}U={1,2,3,4,5}, M=3M=3M=3, α=0.5\alpha =0.5α=0.5, and S1={1,5}S_{1}=\{1, 5\}S​1​​={1,5}, S2={1,2,5}S_{2}=\{1,2,5\}S​2​​={1,2,5}, S3={1,3,4}S_{3}=\{1,3,4\}S​3​​={1,3,4}. Then there are 333 α-frequent subsets of UUU, which are {1}\{1\}{1},{5}\{5\}{5} and {1,5}\{1,5\}{1,5}.

Input Format

The first line contains two numbers N and α\alpha α, where N is a positive integers, and α\alpha α is a floating-point number between 0 and 1. Each of the subsequent lines contains a set which consists of a sequence of positive integers separated by blanks, i.e., line i+1 contains SiS_{i}Si​​, 1≤i≤M1 \le i \le M1iM . Your program should be able to handle NNN up to 202020 and MMM up to 505050.

Output Format

The number of α\alphaα-frequent subsets.

样例输入

15 0.4
1 8 14 4 13 2
3 7 11 6
10 8 4 2
9 3 12 7 15 2
8 3 2 4 5

样例输出

11

题目来源

2017 ACM-ICPC 亚洲区(南宁赛区)网络赛

求在m个集合中出现次数大于a*m的子集数量。n不大与20  最大1<<20  不会超时,直接暴力可以做。

 1 #include <bits/stdc++.h>
 2 #define ll long long
 3 using namespace std;
 4 const int N = 110;
 5 int a[N];
 6 int main() {
 7     int n, num = 0, m = 0;
 8     double aa;
 9     char c;
10     scanf("%d %lf", &n, &aa);
11     getchar();
12     while((c = getchar()) != EOF) {
13         int ans = c - '0';
14         while((c = getchar()) != '\n') {
15             if(c >= '0' && c <= '9') {
16                 ans = ans * 10 + c - '0';
17             }else {
18                 a[m] += 1 << (ans - 1);
19                 ans = 0;
20             }
21         }
22         a[m] += 1 << (ans - 1);
23         m ++;
24     }
25     int ma = ceil(aa*m);
26     int cnt = 0;
27     for(int i = 1; i < (1<<n); i ++) {
28         int num = 0;
29         for(int j = 0; j < m; j ++) {
30             if((i & a[j]) == i) num ++;
31         }
32         if(num >= ma) cnt++;
33     }
34     printf("%d\n",cnt);
35     return 0;
36 }

 

posted @ 2017-09-24 20:59  starry_sky  阅读(222)  评论(0编辑  收藏  举报