opencv各种小例子
图像腐蚀
#include <opencv2/highgui/highgui.hpp>//OpenCV highgui 模块头文件 ~
#include <opencv2/imgproc/imgproc.hpp>//OpenCV 图像处理头文件
using namespace cv; // 包含 cv 命名空间
int main() //控制台应用程序的入 口 函数,我们的程序从这里开始
{
Mat srclmage = imread("G:\\QQ图片20190428194331.jpg");
imshow("[ 原图 ] ",srclmage);
//进行腐蚀操作
Mat element = getStructuringElement(MORPH_RECT, Size(15, 15));//getStructuringElement函数的返回值为指定形状和尺寸的结构元素(内核矩阵〉
Mat dstlmage;
erode(srclmage, dstlmage, element);
//显示效果图
imshow ("[ 效果图 ] ", dstlmage);
waitKey(0);
return 0;
}
图像模糊
#include <opencv2/highgui/highgui.hpp>//OpenCV highgui 模块头文件 ~
#include <opencv2/imgproc/imgproc.hpp>//OpenCV 图像处理头文件
using namespace cv; // 包含 cv 命名空间
int main() //控制台应用程序的入 口 函数,我们的程序从这里开始
{
Mat srclmage = imread("G:\\QQ图片20190428194331.jpg");
imshow("[ 原图 ] ",srclmage);
//进行均值滤波操作
Mat dstlmage;
blur(srclmage, dstlmage, Size(7, 7));
imshow ("[ 效果图 ] ", dstlmage);
waitKey(0);
return 0;
}
canny边缘检测
#include<opencv2/opencv.hpp>
#include <opencv2/imgproc/imgproc.hpp>//OpenCV 图像处理头文件
using namespace cv; // 包含 cv 命名空间
int main() //控制台应用程序的入 口 函数,我们的程序从这里开始
{
Mat srcImage = imread("G:\\QQ图片20190428194331.jpg");
imshow("[ 原图 ] ",srcImage);
Mat dstImage, edge, grayImage;
//创建与src同类型和大小的矩阵(dst)
dstImage.create(srcImage.size(), srcImage.type());
//将原图像转换为灰度图像,Opencv2
cvtColor(srcImage, grayImage, CV_BGR2GRAY);
/*Opencv3
cvtColor(srcImage,grayImage,COLOR_BGR2GRAY);
*/
//先使用3x3内核来降噪
blur(grayImage, edge, Size(3, 3));
//运行Canny算子
Canny(edge, edge, 3, 9, 3);
//显示
imshow ("[ 效果图 ] ", edge);
waitKey(0);
return 0;
}
读取视频
#include<opencv2\opencv.hpp>
using namespace cv;
int main()
{
//读入视频
VideoCapture capture("G:\\视觉资料\\【OpenCV3版】《OpenCV3编程入门》书本配套源代码\\【1】书本正篇程序源代码\\【1】第一章\\【6】播放视频\\6_播放视频\\1.avi ");
//循环显示每一帧
while(1)
{
Mat frame;//定义一个Mat变量,用于储存每一帧的图像
capture >> frame;//读取当前帧
imshow("读取视频",frame);//显示当前帧
waitKey(30);//延时30ms
}
return 0;
}
canny从摄像头得到的视频
#include<opencv2\opencv.hpp>
using namespace cv;
int main()
{
VideoCapture capture(0);
Mat edges;
//循环显示每一帧
while(1)
{
Mat frame;//定义一个Mat变量,用于储存每一帧的图像
capture >> frame;//读取当前帧
cvtColor(frame, edges, CV_BGR2GRAY);
blur(edges, edges, Size(7, 7));
Canny(edges, edges, 0, 30, 3);
imshow("canny后的视频",edges);//显示当前帧
if(waitKey(30)>=0)break;//延时30ms
}
return 0;
}
2.1.1 彩色目标跟踪:Camshift
注意:本代码仅供学习交流所用,所有权归《OpenCV3编程入门》OpenCV3版书,请勿商用
#include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <ctype.h>
using namespace cv;
using namespace std;
//-----------------------------------【全局变量声明】-----------------------------------------
// 描述:声明全局变量
//-------------------------------------------------------------------------------------------------
Mat image;
bool backprojMode = false;
bool selectObject = false;
int trackObject = 0;
bool showHist = true;
Point origin;
Rect selection;
int vmin = 10, vmax = 256, smin = 30;
//--------------------------------【onMouse( )回调函数】------------------------------------
// 描述:鼠标操作回调
//-------------------------------------------------------------------------------------------------
static void onMouse(int event, int x, int y, int, void*)
{
if (selectObject)
{
selection.x = MIN(x, origin.x);
selection.y = MIN(y, origin.y);
selection.width = std::abs(x - origin.x);
selection.height = std::abs(y - origin.y);
selection &= Rect(0, 0, image.cols, image.rows);
}
switch (event)
{
//此句代码的OpenCV2版为:
//case CV_EVENT_LBUTTONDOWN:
//此句代码的OpenCV3版为:
case EVENT_LBUTTONDOWN:
origin = Point(x, y);
selection = Rect(x, y, 0, 0);
selectObject = true;
break;
//此句代码的OpenCV2版为:
//case CV_EVENT_LBUTTONUP:
//此句代码的OpenCV3版为:
case EVENT_LBUTTONUP:
selectObject = false;
if (selection.width > 0 && selection.height > 0)
trackObject = -1;
break;
}
}
//--------------------------------【help( )函数】----------------------------------------------
// 描述:输出帮助信息
//-------------------------------------------------------------------------------------------------
static void ShowHelpText()
{
cout << "\n\n\t\t\t非常感谢购买《OpenCV3编程入门》一书!\n"
<< "\n\n\t\t\t此为本书OpenCV3版的第8个配套示例程序\n"
<< "\n\n\t\t\t 当前使用的OpenCV版本为:" << CV_VERSION
<< "\n\n ----------------------------------------------------------------------------";
cout << "\n\n\t此Demo显示了基于均值漂移的追踪(tracking)技术\n"
"\t请用鼠标框选一个有颜色的物体,对它进行追踪操作\n";
cout << "\n\n\t操作说明: \n"
"\t\t用鼠标框选对象来初始化跟踪\n"
"\t\tESC - 退出程序\n"
"\t\tc - 停止追踪\n"
"\t\tb - 开/关-投影视图\n"
"\t\th - 显示/隐藏-对象直方图\n"
"\t\tp - 暂停视频\n";
}
const char* keys =
{
"{1| | 0 | camera number}"
};
//-----------------------------------【main( )函数】--------------------------------------------
// 描述:控制台应用程序的入口函数,我们的程序从这里开始
//-------------------------------------------------------------------------------------------------
int main(int argc, const char** argv)
{
ShowHelpText();
VideoCapture cap;
Rect trackWindow;
int hsize = 16;
float hranges[] = { 0,180 };
const float* phranges = hranges;
cap.open(0);
if (!cap.isOpened())
{
cout << "不能初始化摄像头\n";
}
namedWindow("Histogram", 0);
namedWindow("CamShift Demo", 0);
setMouseCallback("CamShift Demo", onMouse, 0);
createTrackbar("Vmin", "CamShift Demo", &vmin, 256, 0);
createTrackbar("Vmax", "CamShift Demo", &vmax, 256, 0);
createTrackbar("Smin", "CamShift Demo", &smin, 256, 0);
Mat frame, hsv, hue, mask, hist, histimg = Mat::zeros(200, 320, CV_8UC3), backproj;
bool paused = false;
for (;;)
{
if (!paused)
{
cap >> frame;
if (frame.empty())
break;
}
frame.copyTo(image);
if (!paused)
{
cvtColor(image, hsv, COLOR_BGR2HSV);
if (trackObject)
{
int _vmin = vmin, _vmax = vmax;
inRange(hsv, Scalar(0, smin, MIN(_vmin, _vmax)),
Scalar(180, 256, MAX(_vmin, _vmax)), mask);
int ch[] = { 0, 0 };
hue.create(hsv.size(), hsv.depth());
mixChannels(&hsv, 1, &hue, 1, ch, 1);
if (trackObject < 0)
{
Mat roi(hue, selection), maskroi(mask, selection);
calcHist(&roi, 1, 0, maskroi, hist, 1, &hsize, &phranges);
//此句代码的OpenCV3版为:
normalize(hist, hist, 0, 255, NORM_MINMAX);
//此句代码的OpenCV2版为:
//normalize(hist, hist, 0, 255, CV_MINMAX);
trackWindow = selection;
trackObject = 1;
histimg = Scalar::all(0);
int binW = histimg.cols / hsize;
Mat buf(1, hsize, CV_8UC3);
for (int i = 0; i < hsize; i++)
buf.at<Vec3b>(i) = Vec3b(saturate_cast<uchar>(i*180. / hsize), 255, 255);
//此句代码的OpenCV3版为:
cvtColor(buf, buf, COLOR_HSV2BGR);
//此句代码的OpenCV2版为:
//cvtColor(buf, buf, CV_HSV2BGR);
for (int i = 0; i < hsize; i++)
{
int val = saturate_cast<int>(hist.at<float>(i)*histimg.rows / 255);
rectangle(histimg, Point(i*binW, histimg.rows),
Point((i + 1)*binW, histimg.rows - val),
Scalar(buf.at<Vec3b>(i)), -1, 8);
}
}
calcBackProject(&hue, 1, 0, hist, backproj, &phranges);
backproj &= mask;
RotatedRect trackBox = CamShift(backproj, trackWindow,
//此句代码的OpenCV3版为:
TermCriteria(TermCriteria::EPS | TermCriteria::COUNT, 10, 1));
//此句代码的OpenCV2版为:
//TermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1 ));
if (trackWindow.area() <= 1)
{
int cols = backproj.cols, rows = backproj.rows, r = (MIN(cols, rows) + 5) / 6;
trackWindow = Rect(trackWindow.x - r, trackWindow.y - r,
trackWindow.x + r, trackWindow.y + r) &
Rect(0, 0, cols, rows);
}
if (backprojMode)
cvtColor(backproj, image, COLOR_GRAY2BGR);
//此句代码的OpenCV3版为:
ellipse(image, trackBox, Scalar(0, 0, 255), 3, LINE_AA);
//此句代码的OpenCV2版为:
//ellipse( image, trackBox, Scalar(0,0,255), 3, CV_AA );
}
}
else if (trackObject < 0)
paused = false;
if (selectObject && selection.width > 0 && selection.height > 0)
{
Mat roi(image, selection);
bitwise_not(roi, roi);
}
imshow("CamShift Demo", image);
imshow("Histogram", histimg);
char c = (char)waitKey(10);
if (c == 27)
break;
switch (c)
{
case 'b':
backprojMode = !backprojMode;
break;
case 'c':
trackObject = 0;
histimg = Scalar::all(0);
break;
case 'h':
showHist = !showHist;
if (!showHist)
destroyWindow("Histogram");
else
namedWindow("Histogram", 1);
break;
case 'p':
paused = !paused;
break;
default:
;
}
}
return 0;
}
9_用光流法进行运动目标检测
//---------------------------------【头文件、命名空间包含部分】----------------------------
// 描述:包含程序所使用的头文件和命名空间
//-------------------------------------------------------------------------------------------------
#include <opencv2/video/video.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/core/core.hpp>
#include <iostream>
#include <cstdio>
using namespace std;
using namespace cv;
//-----------------------------------【全局函数声明】-----------------------------------------
// 描述:声明全局函数
//-------------------------------------------------------------------------------------------------
void tracking(Mat &frame, Mat &output);
bool addNewPoints();
bool acceptTrackedPoint(int i);
//-----------------------------------【全局变量声明】-----------------------------------------
// 描述:声明全局变量
//-------------------------------------------------------------------------------------------------
string window_name = "optical flow tracking";
Mat gray; // 当前图片
Mat gray_prev; // 预测图片
vector<Point2f> points[2]; // point0为特征点的原来位置,point1为特征点的新位置
vector<Point2f> initial; // 初始化跟踪点的位置
vector<Point2f> features; // 检测的特征
int maxCount = 500; // 检测的最大特征数
double qLevel = 0.01; // 特征检测的等级
double minDist = 10.0; // 两特征点之间的最小距离
vector<uchar> status; // 跟踪特征的状态,特征的流发现为1,否则为0
vector<float> err;
//--------------------------------【help( )函数】----------------------------------------------
// 描述:输出帮助信息
//-------------------------------------------------------------------------------------------------
static void help()
{
//输出欢迎信息和OpenCV版本
cout <<"\n\n\t\t\t非常感谢购买《OpenCV3编程入门》一书!\n"
<<"\n\n\t\t\t此为本书OpenCV3版的第9个配套示例程序\n"
<< "\n\n\t\t\t 当前使用的OpenCV版本为:" << CV_VERSION
<<"\n\n ----------------------------------------------------------------------------" ;
}
//-----------------------------------【main( )函数】--------------------------------------------
// 描述:控制台应用程序的入口函数,我们的程序从这里开始
//-------------------------------------------------------------------------------------------------
int main()
{
Mat frame;
Mat result;
VideoCapture capture("1.avi");
help();
if(capture.isOpened()) // 摄像头读取文件开关
{
while(true)
{
capture >> frame;
if(!frame.empty())
{
tracking(frame, result);
}
else
{
printf(" --(!) No captured frame -- Break!");
break;
}
int c = waitKey(50);
if( (char)c == 27 )
{
break;
}
}
}
return 0;
}
//-------------------------------------------------------------------------------------------------
// function: tracking
// brief: 跟踪
// parameter: frame 输入的视频帧
// output 有跟踪结果的视频帧
// return: void
//-------------------------------------------------------------------------------------------------
void tracking(Mat &frame, Mat &output)
{
//此句代码的OpenCV3版为:
cvtColor(frame, gray, COLOR_BGR2GRAY);
//此句代码的OpenCV2版为:
//cvtColor(frame, gray, CV_BGR2GRAY);
frame.copyTo(output);
// 添加特征点
if (addNewPoints())
{
goodFeaturesToTrack(gray, features, maxCount, qLevel, minDist);
points[0].insert(points[0].end(), features.begin(), features.end());
initial.insert(initial.end(), features.begin(), features.end());
}
if (gray_prev.empty())
{
gray.copyTo(gray_prev);
}
// l-k光流法运动估计
calcOpticalFlowPyrLK(gray_prev, gray, points[0], points[1], status, err);
// 去掉一些不好的特征点
int k = 0;
for (size_t i=0; i<points[1].size(); i++)
{
if (acceptTrackedPoint(i))
{
initial[k] = initial[i];
points[1][k++] = points[1][i];
}
}
points[1].resize(k);
initial.resize(k);
// 显示特征点和运动轨迹
for (size_t i=0; i<points[1].size(); i++)
{
line(output, initial[i], points[1][i], Scalar(0, 0, 255));
circle(output, points[1][i], 3, Scalar(0, 255, 0), -1);
}
// 把当前跟踪结果作为下一此参考
swap(points[1], points[0]);
swap(gray_prev, gray);
imshow(window_name, output);
}
//-------------------------------------------------------------------------------------------------
// function: addNewPoints
// brief: 检测新点是否应该被添加
// parameter:
// return: 是否被添加标志
//-------------------------------------------------------------------------------------------------
bool addNewPoints()
{
return points[0].size() <= 10;
}
//-------------------------------------------------------------------------------------------------
// function: acceptTrackedPoint
// brief: 决定哪些跟踪点被接受
// parameter:
// return:
//-------------------------------------------------------------------------------------------------
bool acceptTrackedPoint(int i)
{
return status[i] && ((abs(points[0][i].x - points[1][i].x) + abs(points[0][i].y - points[1][i].y)) > 2);
}
点追踪
#include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <ctype.h>
using namespace cv;
using namespace std;
//--------------------------------【help( )函数】----------------------------------------------
// 描述:输出帮助信息
//-------------------------------------------------------------------------------------------------
static void help()
{
//输出欢迎信息和OpenCV版本
cout << "\n\n\t\t\t非常感谢购买《OpenCV3编程入门》一书!\n"
<< "\n\n\t\t\t此为本书OpenCV3版的第10个配套示例程序\n"
<< "\n\n\t\t\t 当前使用的OpenCV版本为:" << CV_VERSION
<< "\n\n ----------------------------------------------------------------------------";
cout << "\n\n\t该Demo演示了 Lukas-Kanade基于光流的lkdemo\n";
cout << "\n\t程序默认从摄像头读入视频,可以按需改为从视频文件读入图像\n";
cout << "\n\t操作说明: \n"
"\t\t通过点击在图像中添加/删除特征点\n"
"\t\tESC - 退出程序\n"
"\t\tr -自动进行追踪\n"
"\t\tc - 删除所有点\n"
"\t\tn - 开/光-夜晚模式\n" << endl;
}
Point2f point;
bool addRemovePt = false;
//--------------------------------【onMouse( )回调函数】------------------------------------
// 描述:鼠标操作回调
//-------------------------------------------------------------------------------------------------
static void onMouse(int event, int x, int y, int /*flags*/, void* /*param*/)
{
//此句代码的OpenCV2版为:
//if( event == CV_EVENT_LBUTTONDOWN )
//此句代码的OpenCV3版为:
if (event == EVENT_LBUTTONDOWN)
{
point = Point2f((float)x, (float)y);
addRemovePt = true;
}
}
//-----------------------------------【main( )函数】--------------------------------------------
// 描述:控制台应用程序的入口函数,我们的程序从这里开始
//-------------------------------------------------------------------------------------------------
int main(int argc, char** argv)
{
help();
VideoCapture cap;
//此句代码的OpenCV2版为:
//TermCriteria termcrit(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 20, 0.03);
//此句代码的OpenCV3版为:
TermCriteria termcrit(TermCriteria::MAX_ITER | TermCriteria::EPS, 20, 0.03);
Size subPixWinSize(10, 10), winSize(31, 31);
const int MAX_COUNT = 500;
bool needToInit = false;
bool nightMode = false;
cap.open(0);
if (!cap.isOpened())
{
cout << "Could not initialize capturing...\n";
return 0;
}
namedWindow("LK Demo", 1);
setMouseCallback("LK Demo", onMouse, 0);
Mat gray, prevGray, image;
vector<Point2f> points[2];
for (;;)
{
Mat frame;
cap >> frame;
if (frame.empty())
break;
frame.copyTo(image);
cvtColor(image, gray, COLOR_BGR2GRAY);
if (nightMode)
image = Scalar::all(0);
if (needToInit)
{
// 自动初始化
goodFeaturesToTrack(gray, points[1], MAX_COUNT, 0.01, (double)10, Mat(), 3,(bool) 0, 0.04);
cornerSubPix(gray, points[1], subPixWinSize, Size(-1, -1), termcrit);
addRemovePt = false;
}
else if (!points[0].empty())
{
vector<uchar> status;
vector<float> err;
if (prevGray.empty())
gray.copyTo(prevGray);
calcOpticalFlowPyrLK(prevGray, gray, points[0], points[1], status, err, winSize,
3, termcrit, 0, 0.001);
size_t i, k;
for (i = k = 0; i < points[1].size(); i++)
{
if (addRemovePt)
{
if (norm(point - points[1][i]) <= 5)
{
addRemovePt = false;
continue;
}
}
if (!status[i])
continue;
points[1][k++] = points[1][i];
circle(image, points[1][i], 3, Scalar(0, 255, 0), -1, 8);
}
points[1].resize(k);
}
if (addRemovePt && points[1].size() < (size_t)MAX_COUNT)
{
vector<Point2f> tmp;
tmp.push_back(point);
//此句代码的OpenCV2版为:
//cornerSubPix( gray, tmp, winSize, cvSize(-1,-1), termcrit);
//此句代码的OpenCV3版为:
cornerSubPix(gray, tmp, winSize, Size(-1, -1), termcrit);
points[1].push_back(tmp[0]);
addRemovePt = false;
}
needToInit = false;
imshow("LK Demo", image);
char c = (char)waitKey(10);
if (c == 27)
break;
switch (c)
{
case 'r':
needToInit = true;
break;
case 'c':
points[0].clear();
points[1].clear();
break;
case 'n':
nightMode = !nightMode;
break;
}
std::swap(points[1], points[0]);
cv::swap(prevGray, gray);
}
return 0;
}