linux-alsa详解2 pcm设备

1 pcm设备介绍

PCM是英文Pulse-code modulation的缩写,中文译名是脉冲编码调制.我们知道在现实生活中,人耳听到的声音是模拟信号,PCM就是要把声音从模拟转换成数字信号的一种技术,他的原理简单地说就是利用一个固定的频率对模拟信号进行采样,采样后的信号在波形上看就像一串连续的幅值不一的脉冲,把这些脉冲的幅值按一定的精度进行量化,这些量化后的数值被连续地输出、传输、处理或记录到存储介质中,所有这些组成了数字音频的产生过程。

PCM信号的两个重要指标是采样频率和量化精度,目前,CD音频的采样频率通常为44100Hz,量化精度是16bit.通常,播放音乐时,应用程序从存储介质中读取音频数据(MP3、WMA、AAC......),经过解码后,最终送到音频驱动程序中的就是PCM数据,反过来,在录音时,音频驱动不停地把采样所得的PCM数据送回给应用程序,由应用程序完成压缩、存储等任务.所以,音频驱动的两大核心任务就是:

playback    如何把用户空间的应用程序发过来的PCM数据,转化为人耳可以辨别的模拟音频
capture     把mic拾取到得模拟信号,经过采样、量化,转换为PCM信号送回给用户空间的应用程序

 2 alsa drive中的pcm中间层

ALSA已经为我们实现了功能强劲的PCM中间层,自己的驱动中只要实现一些底层的需要访问硬件的函数即可。要访问PCM的中间层代码,你首先要包含头文件<sound/pcm.h>,另外,如果需要访问一些与 hw_param相关的函数,可能也要包含<sound/pcm_params.h>。

每个声卡最多可以包含4个pcm的实例,每个pcm实例对应一个pcm设备文件.pcm实例数量的这种限制源于linux设备号所占用的位大小,如果以后使用64位的设备号,我们将可以创建更多的pcm实例.不过大多数情况下,在嵌入式设备中,一个pcm实例已经足够了。一个pcm实例由一个playback stream和一个capture stream组成,这两个stream又分别有一个或多个substreams组成。

但是在嵌入式系统中,通常不会像上图2中这么复杂,大多数情况下是一个声卡,一个pcm实例,pcm下面有一个playback和capture stream,playback和capture下面各自有一个substream.

3 pcm的数据结构

定义位于:include\sound\pcm.h

3.1 struct snd_pcm

是挂在snd_card下面的一个snd_device。

 1 struct snd_pcm {
 2     struct snd_card *card;
 3     struct list_head list;
 4     int device; /* device number */
 5     unsigned int info_flags;
 6     unsigned short dev_class;
 7     unsigned short dev_subclass;
 8     char id[64];
 9     char name[80];
10     struct snd_pcm_str streams[2];//该数组中的两个元素指向两个snd_pcm_str结构,分别代表playback stream和capture stream
11     struct mutex open_mutex;
12     wait_queue_head_t open_wait;
13     void *private_data;
14     void (*private_free) (struct snd_pcm *pcm);
15     struct device *dev; /* actual hw device this belongs to */
16     bool internal; /* pcm is for internal use only */
17 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
18     struct snd_pcm_oss oss;
19 #endif
20 }

3.2 struct  snd_pcm_str

 1 struct snd_pcm_str {
 2     int stream;                /* stream (direction) */
 3     struct snd_pcm *pcm;
 4     /* -- substreams -- */
 5     unsigned int substream_count;
 6     unsigned int substream_opened;
 7     struct snd_pcm_substream *substream;//指向snd_pcm_substream结构
 8 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
 9     /* -- OSS things -- */
10     struct snd_pcm_oss_stream oss;
11 #endif
12 #ifdef CONFIG_SND_VERBOSE_PROCFS
13     struct snd_info_entry *proc_root;
14     struct snd_info_entry *proc_info_entry;
15 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
16     unsigned int xrun_debug;    /* 0 = disabled, 1 = verbose, 2 = stacktrace */
17     struct snd_info_entry *proc_xrun_debug_entry;
18 #endif
19 #endif
20     struct snd_kcontrol *chmap_kctl; /* channel-mapping controls */
21 }

3.3 struct snd_pcm_substream

是pcm中间层的核心,绝大部分任务都是在substream中处理,尤其是他的ops(snd_pcm_ops)字段,许多user空间的应用程序通过alsa-lib对驱动程序的请求都是由该结构中的函数处理.它的runtime字段则指向snd_pcm_runtime结构,snd_pcm_runtime记录这substream的一些重要的软件和硬件运行环境和参数。

 1 struct snd_pcm_substream {
 2     struct snd_pcm *pcm;
 3     struct snd_pcm_str *pstr;
 4     void *private_data;        /* copied from pcm->private_data */
 5     int number;
 6     char name[32];            /* substream name */
 7     int stream;            /* stream (direction) */
 8     struct pm_qos_request latency_pm_qos_req; /* pm_qos request */
 9     size_t buffer_bytes_max;    /* limit ring buffer size */
10     struct snd_dma_buffer dma_buffer;
11     unsigned int dma_buf_id;
12     size_t dma_max;
13     /* -- hardware operations -- */
14     struct snd_pcm_ops *ops;//user空间的应用程序通过alsa-lib对驱动程序的请求都是由该结构中的函数处理
15     /* -- runtime information -- */
16     struct snd_pcm_runtime *runtime;//记录这substream的一些重要的软件和硬件运行环境和参数
17         /* -- timer section -- */
18     struct snd_timer *timer;        /* timer */
19     unsigned timer_running: 1;    /* time is running */
20     /* -- next substream -- */
21     struct snd_pcm_substream *next;
22     /* -- linked substreams -- */
23     struct list_head link_list;    /* linked list member */
24     struct snd_pcm_group self_group;    /* fake group for non linked substream (with substream lock inside) */
25     struct snd_pcm_group *group;        /* pointer to current group */
26     /* -- assigned files -- */
27     void *file;
28     int ref_count;
29     atomic_t mmap_count;
30     unsigned int f_flags;
31     void (*pcm_release)(struct snd_pcm_substream *);
32     struct pid *pid;
33 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
34     /* -- OSS things -- */
35     struct snd_pcm_oss_substream oss;
36 #endif
37 #ifdef CONFIG_SND_VERBOSE_PROCFS
38     struct snd_info_entry *proc_root;
39     struct snd_info_entry *proc_info_entry;
40     struct snd_info_entry *proc_hw_params_entry;
41     struct snd_info_entry *proc_sw_params_entry;
42     struct snd_info_entry *proc_status_entry;
43     struct snd_info_entry *proc_prealloc_entry;
44     struct snd_info_entry *proc_prealloc_max_entry;
45 #endif
46     /* misc flags */
47     unsigned int hw_opened: 1;
48 }

3.4 struct snd_pcm_ops

pcm设备的设备操作结构体

 1 struct snd_pcm_ops {
 2     int (*open)(struct snd_pcm_substream *substream);
 3     int (*close)(struct snd_pcm_substream *substream);
 4     int (*ioctl)(struct snd_pcm_substream * substream,
 5              unsigned int cmd, void *arg);
 6     int (*hw_params)(struct snd_pcm_substream *substream,
 7              struct snd_pcm_hw_params *params);
 8     int (*hw_free)(struct snd_pcm_substream *substream);
 9     int (*prepare)(struct snd_pcm_substream *substream);
10     int (*trigger)(struct snd_pcm_substream *substream, int cmd);
11     snd_pcm_uframes_t (*pointer)(struct snd_pcm_substream *substream);
12     int (*wall_clock)(struct snd_pcm_substream *substream,
13               struct timespec *audio_ts);
14     int (*copy)(struct snd_pcm_substream *substream, int channel,
15             snd_pcm_uframes_t pos,
16             void __user *buf, snd_pcm_uframes_t count);
17     int (*silence)(struct snd_pcm_substream *substream, int channel, 
18                snd_pcm_uframes_t pos, snd_pcm_uframes_t count);
19     struct page *(*page)(struct snd_pcm_substream *substream,
20                  unsigned long offset);
21     int (*mmap)(struct snd_pcm_substream *substream, struct vm_area_struct *vma);
22     int (*ack)(struct snd_pcm_substream *substream);
23 }

3.5 struct snd_pcm_file

1 struct snd_pcm_file {
2     struct snd_pcm_substream *substream;
3     int no_compat_mmap;
4 };

3.6  struct snd_pcm_runtime

记录这substream的一些重要的软件和硬件运行环境和参数

 1 struct snd_pcm_runtime {
 2     /* -- Status -- */
 3     struct snd_pcm_substream *trigger_master;
 4     struct timespec trigger_tstamp;    /* trigger timestamp */
 5     int overrange;
 6     snd_pcm_uframes_t avail_max;
 7     snd_pcm_uframes_t hw_ptr_base;    /* Position at buffer restart */
 8     snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time */
 9     unsigned long hw_ptr_jiffies;    /* Time when hw_ptr is updated */
10     unsigned long hw_ptr_buffer_jiffies; /* buffer time in jiffies */
11     snd_pcm_sframes_t delay;    /* extra delay; typically FIFO size */
12     u64 hw_ptr_wrap;                /* offset for hw_ptr due to boundary wrap-around */
13 
14     /* -- HW params -- */
15     snd_pcm_access_t access;    /* access mode */
16     snd_pcm_format_t format;    /* SNDRV_PCM_FORMAT_* */
17     snd_pcm_subformat_t subformat;    /* subformat */
18     unsigned int rate;        /* rate in Hz */
19     unsigned int channels;        /* channels */
20     snd_pcm_uframes_t period_size;    /* period size */
21     unsigned int periods;        /* periods */
22     snd_pcm_uframes_t buffer_size;    /* buffer size */
23     snd_pcm_uframes_t min_align;    /* Min alignment for the format */
24     size_t byte_align;
25     unsigned int frame_bits;
26     unsigned int sample_bits;
27     unsigned int info;
28     unsigned int rate_num;
29     unsigned int rate_den;
30     unsigned int no_period_wakeup: 1;
31 
32     /* -- SW params -- */
33     int tstamp_mode;        /* mmap timestamp is updated */
34       unsigned int period_step;
35     snd_pcm_uframes_t start_threshold;
36     snd_pcm_uframes_t stop_threshold;
37     snd_pcm_uframes_t silence_threshold; /* Silence filling happens when
38                         noise is nearest than this */
39     snd_pcm_uframes_t silence_size;    /* Silence filling size */
40     snd_pcm_uframes_t boundary;    /* pointers wrap point */
41 
42     snd_pcm_uframes_t silence_start; /* starting pointer to silence area */
43     snd_pcm_uframes_t silence_filled; /* size filled with silence */
44 
45     union snd_pcm_sync_id sync;    /* hardware synchronization ID */
46 
47     /* -- mmap -- */
48     struct snd_pcm_mmap_status *status;
49     struct snd_pcm_mmap_control *control;
50 
51     /* -- locking / scheduling -- */
52     snd_pcm_uframes_t twake;     /* do transfer (!poll) wakeup if non-zero */
53     wait_queue_head_t sleep;    /* poll sleep */
54     wait_queue_head_t tsleep;    /* transfer sleep */
55     struct fasync_struct *fasync;
56 
57     /* -- private section -- */
58     void *private_data;
59     void (*private_free)(struct snd_pcm_runtime *runtime);
60 
61     /* -- hardware description -- */
62     struct snd_pcm_hardware hw;
63     struct snd_pcm_hw_constraints hw_constraints;
64 
65     /* -- interrupt callbacks -- */
66     void (*transfer_ack_begin)(struct snd_pcm_substream *substream);
67     void (*transfer_ack_end)(struct snd_pcm_substream *substream);
68 
69     /* -- timer -- */
70     unsigned int timer_resolution;    /* timer resolution */
71     int tstamp_type;        /* timestamp type */
72 
73     /* -- DMA -- */           
74     unsigned char *dma_area;    /* DMA area */
75     dma_addr_t dma_addr;        /* physical bus address (not accessible from main CPU) */
76     size_t dma_bytes;        /* size of DMA area */
77 
78     struct snd_dma_buffer *dma_buffer_p;    /* allocated buffer */
79 
80 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
81     /* -- OSS things -- */
82     struct snd_pcm_oss_runtime oss;
83 #endif
84 
85 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
86     struct snd_pcm_hwptr_log *hwptr_log;
87 #endif
88 }

3.7  struct snd_pcm_hardware

 1 /*
 2  *  Hardware (lowlevel) section
 3  */
 4 
 5 struct snd_pcm_hardware {
 6     unsigned int info;        /* SNDRV_PCM_INFO_* */
 7     u64 formats;            /* SNDRV_PCM_FMTBIT_* */
 8     unsigned int rates;        /* SNDRV_PCM_RATE_* */
 9     unsigned int rate_min;        /* min rate */
10     unsigned int rate_max;        /* max rate */
11     unsigned int channels_min;    /* min channels */
12     unsigned int channels_max;    /* max channels */
13     size_t buffer_bytes_max;    /* max buffer size */
14     size_t period_bytes_min;    /* min period size */
15     size_t period_bytes_max;    /* max period size */
16     unsigned int periods_min;    /* min # of periods */
17     unsigned int periods_max;    /* max # of periods */
18     size_t fifo_size;        /* fifo size in bytes */
19 }

3.8 以上pcm各数据结构的关系如下:

4 创建pcm设备

4.1 创建pcm

函数snd_pcm_new,定义位于:sound\core\pcm.c

 1 /**
 2  * snd_pcm_new - create a new PCM instance 
 3  * @card: the card instance
 4  * @id: the id string
 5  * @device: the device index (zero based) 参数device 表示目前创建的是该声卡下的第几个pcm,第一个pcm设备从0开始.
 6  * @playback_count: the number of substreams for playback 参数playback_count 表示该pcm将会有几个playback substream.
 7  * @capture_count: the number of substreams for capture 参数capture_count 表示该pcm将会有几个capture substream.
 8  * @rpcm: the pointer to store the new pcm instance
 9  *
10  * Creates a new PCM instance.
11  *
12  * The pcm operators have to be set afterwards to the new instance
13  * via snd_pcm_set_ops().
14  *
15  * Return: Zero if successful, or a negative error code on failure.
16  */
17 int snd_pcm_new(struct snd_card *card, const char *id, int device,
18         int playback_count, int capture_count, struct snd_pcm **rpcm)
19 {
20     return _snd_pcm_new(card, id, device, playback_count, capture_count,
21             false, rpcm);
22 }

调用函数 _snd_pcm_new

调用该api创建一个pcm,然后会做以下事情:

(1)如果有,建立playback stream,相应的substream也同时建立

(2)如果有,建立capture stream,相应的substream也同时建立

(3)调用snd_device_new()把该pcm挂到声卡中,参数ops中的dev_register字段指向了函数snd_pcm_dev_register,这个回调函数会在声卡的注册阶段被调用.

 1 static int _snd_pcm_new(struct snd_card *card, const char *id, int device,
 2         int playback_count, int capture_count, bool internal,
 3         struct snd_pcm **rpcm)
 4 {
 5     struct snd_pcm *pcm;//创建一个pcm
 6     int err;
 7     static struct snd_device_ops ops = {
 8         .dev_free = snd_pcm_dev_free,
 9         .dev_register =    snd_pcm_dev_register,
10         .dev_disconnect = snd_pcm_dev_disconnect,
11     };
12 
13     if (snd_BUG_ON(!card))
14         return -ENXIO;
15     if (rpcm)
16         *rpcm = NULL;
17     pcm = kzalloc(sizeof(*pcm), GFP_KERNEL);
18     if (pcm == NULL) {
19         snd_printk(KERN_ERR "Cannot allocate PCM\n");
20         return -ENOMEM;
21     }
22     pcm->card = card;
23     pcm->device = device;
24     pcm->internal = internal;
25     if (id)
26         strlcpy(pcm->id, id, sizeof(pcm->id));
27     if ((err = snd_pcm_new_stream(pcm, SNDRV_PCM_STREAM_PLAYBACK, playback_count)) < 0) {//创建playback stream 播放
28         snd_pcm_free(pcm);
29         return err;
30     }
31     if ((err = snd_pcm_new_stream(pcm, SNDRV_PCM_STREAM_CAPTURE, capture_count)) < 0) {//创建capture stream 录音
32         snd_pcm_free(pcm);
33         return err;
34     }
35     mutex_init(&pcm->open_mutex);
36     init_waitqueue_head(&pcm->open_wait);
37     if ((err = snd_device_new(card, SNDRV_DEV_PCM, pcm, &ops)) < 0) {//把该pcm挂到声卡中,参数ops中的dev_register字段指向了函数snd_pcm_dev_register,这个回调函数会在声卡的注册阶段被调用
38         snd_pcm_free(pcm);
39         return err;
40     }
41     if (rpcm)
42         *rpcm = pcm;
43     return 0;
44 }

4.2 snd_device_new函数

定义位于:linux-4.9.73\sound\core\device.c

作用:(1)拿到声卡逻辑设备的设备操作结构体

(2)将该设备逻辑设备加入声卡结构体devices链表中(该声卡下逻辑设备比如control、pcm等),dev->list加入card->devies,在注册时根据此链表找到对应逻辑设备,调用其注册函数。

 1 int snd_device_new(struct snd_card *card, enum snd_device_type type,
 2            void *device_data, struct snd_device_ops *ops)
 3 {
 4     struct snd_device *dev;
 5     struct list_head *p;
 6 
 7     if (snd_BUG_ON(!card || !device_data || !ops))
 8         return -ENXIO;
 9     dev = kzalloc(sizeof(*dev), GFP_KERNEL);
10     if (!dev)
11         return -ENOMEM;
12     INIT_LIST_HEAD(&dev->list);
13     dev->card = card;
14     dev->type = type;
15     dev->state = SNDRV_DEV_BUILD;
16     dev->device_data = device_data;
17     dev->ops = ops;//拿到声卡逻辑设备的设备操作结构体
18 
19     /* insert the entry in an incrementally sorted list */
20     list_for_each_prev(p, &card->devices) {//将该设备逻辑设备加入声卡结构体devices链表中(该声卡下逻辑设备比如control、pcm等),dev->list加入card->devies
21         struct snd_device *pdev = list_entry(p, struct snd_device, list);//获取声卡逻辑设备结构体
22         if ((unsigned int)pdev->type <= (unsigned int)type)//判断该逻辑设备的类型,常用的control或者pcm
23             break;
24     }
25 
26     list_add(&dev->list, p);//在链表p的前面加入链表dev->list
27     return 0;
28 }

设备操作结构体定义,位于_snd_pcm_new函数中,最重要的是注册函数

static struct snd_device_ops ops = {
.dev_free = snd_pcm_dev_free,
.dev_register = snd_pcm_dev_register,
.dev_disconnect = snd_pcm_dev_disconnect,
}

4.3 函数snd_pcm_set_ops

定义位于:sound\core\pcm_lib.c

设置操作该pcm的控制/操作接口函数,参数中的snd_pcm_ops结构中的函数通常就是我们驱动要实现的函数。

 1 /**
 2  * snd_pcm_set_ops - set the PCM operators
 3  * @pcm: the pcm instance
 4  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 5  * @ops: the operator table
 6  *
 7  * Sets the given PCM operators to the pcm instance.
 8  */
 9 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
10 {
11     struct snd_pcm_str *stream = &pcm->streams[direction];
12     struct snd_pcm_substream *substream;
13     
14     for (substream = stream->substream; substream != NULL; substream = substream->next)
15         substream->ops = ops;
16 }

5 注册pcm设备

在上面创建的pcm设备信息基础上,注册pcm设备。 

先调用函数snd_card_register注册声卡,然后该函数中会调用pcm注册函数snd_pcm_dev_register注册pcm设备。下面分别讲解,先看pcm注册函数。

5.1 pcm设备注册函数

snd_pcm_dev_register,定义位于sound\core\pcm.c。

 1 static int snd_pcm_dev_register(struct snd_device *device)
 2 {
 3     int cidx, err;
 4     struct snd_pcm_substream *substream;
 5     struct snd_pcm_notify *notify;
 6     struct snd_pcm *pcm;
 7 
 8     if (snd_BUG_ON(!device || !device->device_data))
 9         return -ENXIO;
10     pcm = device->device_data;
11     if (pcm->internal)
12         return 0;
13 
14     mutex_lock(&register_mutex);
15     err = snd_pcm_add(pcm);
16     if (err)
17         goto unlock;
18     for (cidx = 0; cidx < 2; cidx++) {
19         int devtype = -1;
20         if (pcm->streams[cidx].substream == NULL)
21             continue;
22         switch (cidx) {
23         case SNDRV_PCM_STREAM_PLAYBACK:
24             devtype = SNDRV_DEVICE_TYPE_PCM_PLAYBACK;
25             break;
26         case SNDRV_PCM_STREAM_CAPTURE:
27             devtype = SNDRV_DEVICE_TYPE_PCM_CAPTURE;
28             break;
29         }
30         /* register pcm */
31         err = snd_register_device(devtype, pcm->card, pcm->device,
32                       &snd_pcm_f_ops[cidx], pcm,//指定pcm设备的文件操作结构体
33                       &pcm->streams[cidx].dev);
34         if (err < 0) {
35             list_del_init(&pcm->list);
36             goto unlock;
37         }
38 
39         for (substream = pcm->streams[cidx].substream; substream; substream = substream->next)
40             snd_pcm_timer_init(substream);
41     }
42 
43     list_for_each_entry(notify, &snd_pcm_notify_list, list)
44         notify->n_register(pcm);
45 
46  unlock:
47     mutex_unlock(&register_mutex);
48     return err;
49 }

该pcm设备注册函数snd_pcm_dev_register会加入设备操作结构体snd_device_ops 作为回调函数。

然后调用函数snd_register_device完成最终的注册.

5.1.1 函数snd_register_device

 1 /**
 2  * snd_register_device - Register the ALSA device file for the card
 3  * @type: the device type, SNDRV_DEVICE_TYPE_XXX
 4  * @card: the card instance
 5  * @dev: the device index
 6  * @f_ops: the file operations
 7  * @private_data: user pointer for f_ops->open()
 8  * @device: the device to register
 9  *
10  * Registers an ALSA device file for the given card.
11  * The operators have to be set in reg parameter.
12  *
13  * Return: Zero if successful, or a negative error code on failure.
14  */
15 int snd_register_device(int type, struct snd_card *card, int dev,
16             const struct file_operations *f_ops,
17             void *private_data, struct device *device)
18 {
19     int minor;
20     int err = 0;
21     struct snd_minor *preg;//建立次设备
22 
23     if (snd_BUG_ON(!device))
24         return -EINVAL;
25     /*给次设备赋值*/
26     preg = kmalloc(sizeof *preg, GFP_KERNEL);
27     if (preg == NULL)
28         return -ENOMEM;
29     preg->type = type;
30     preg->card = card ? card->number : -1;
31     preg->device = dev;
32     preg->f_ops = f_ops;//获取文件操作结构体
33     preg->private_data = private_data;
34     preg->card_ptr = card;
35     mutex_lock(&sound_mutex);
36     minor = snd_find_free_minor(type, card, dev);
37     if (minor < 0) {
38         err = minor;
39         goto error;
40     }
41 
42     preg->dev = device;
43     device->devt = MKDEV(major, minor);
44     err = device_add(device);//创建设备节点
45     if (err < 0)
46         goto error;
47 
48     snd_minors[minor] = preg;//赋值给全局的次设备信息结构体
49  error:
50     mutex_unlock(&sound_mutex);
51     if (err < 0)
52         kfree(preg);
53     return err;
54 }

主要作用:

(1)获取声卡次设备snd_minor ,并将其赋值给全局声卡次设备变量snd_minor中 

(2)获取次设备pcm的文件操作结构体,供用户层使用的api回调函数。snd_pcm_f_ops作为snd_register_device的参数被传入,并被记录在snd_minors[minor]中的字段f_ops中.最后创建设备节点。创建节点之后我们就能在/dev目录下查看到相应的设备文件。

5.1.2 pcm设备的文件操作结构体

回调函数,供用户层使用的api。分为playback和capature,即播放设备和录音设备。

 1 /*
 2  *  Register section
 3  */
 4 
 5 const struct file_operations snd_pcm_f_ops[2] = {
 6     {
 7         .owner =        THIS_MODULE,
 8         .write =        snd_pcm_write,
 9         .write_iter =        snd_pcm_writev,
10         .open =            snd_pcm_playback_open,
11         .release =        snd_pcm_release,
12         .llseek =        no_llseek,
13         .poll =            snd_pcm_playback_poll,
14         .unlocked_ioctl =    snd_pcm_playback_ioctl,
15         .compat_ioctl =     snd_pcm_ioctl_compat,
16         .mmap =            snd_pcm_mmap,
17         .fasync =        snd_pcm_fasync,
18         .get_unmapped_area =    snd_pcm_get_unmapped_area,
19     },
20     {
21         .owner =        THIS_MODULE,
22         .read =            snd_pcm_read,
23         .read_iter =        snd_pcm_readv,
24         .open =            snd_pcm_capture_open,
25         .release =        snd_pcm_release,
26         .llseek =        no_llseek,
27         .poll =            snd_pcm_capture_poll,
28         .unlocked_ioctl =    snd_pcm_capture_ioctl,
29         .compat_ioctl =     snd_pcm_ioctl_compat,
30         .mmap =            snd_pcm_mmap,
31         .fasync =        snd_pcm_fasync,
32         .get_unmapped_area =    snd_pcm_get_unmapped_area,
33     }
34 }

然后看声卡注册函数。

5.2 声卡注册函数

snd_card_register 详见:linux - alsa详解1概括。dev/snd/pcmCxxDxxp、pcmCxxDxxc,设备文件节点的建立。注意和上面pcm设备注册函数的区别,声卡注册函数最终会调用pcm注册函数注册pcm设备,或者调用control设备注册函数注册控制设备。

snd_card_register 函数调用函数snd_device_register_all

5.3 snd_device_register_all

 1 /*
 2  * register all the devices on the card.
 3  * called from init.c
 4  */
 5 int snd_device_register_all(struct snd_card *card)
 6 {
 7     struct snd_device *dev;
 8     int err;
 9     
10     if (snd_BUG_ON(!card))
11         return -ENXIO;
12     list_for_each_entry(dev, &card->devices, list) {//遍历声卡结构体中的设备链表,逐个注册声卡下挂载的逻辑设备
13         err = __snd_device_register(dev);
14         if (err < 0)
15             return err;
16     }
17     return 0;
18 }

5.4 函数__snd_device_register

 1 static int __snd_device_register(struct snd_device *dev)
 2 {
 3     if (dev->state == SNDRV_DEV_BUILD) {
 4         if (dev->ops->dev_register) {
 5             int err = dev->ops->dev_register(dev);//调用声卡逻辑设备的注册函数,即5.1中pcm设备注册函数snd_pcm_dev_register
 6             if (err < 0)
 7                 return err;
 8         }
 9         dev->state = SNDRV_DEV_REGISTERED;
10     }
11     return 0;
12 }

注册声卡,在这个阶段会遍历声卡下的所有逻辑设备,并且调用各设备的注册回调函数,对于pcm,就是第二步提到的snd_pcm_dev_register函数,该回调函数建立了和用户空间应用程序(alsa-lib)通信所用的设备文件节点:/dev/snd/pcmCxxDxxp和/dev/snd/pcmCxxDxxc

注:一共有两个关键的结构体:

(1)设备操作结构体snd_device_ops ,在声卡创建时注册回调函数,主要是设备注册回调函数snd_pcm_dev_register,在声卡注册时会调用其注册pcm设备

(2)文件操作结构体struct file_operations snd_pcm_f_ops,在pcm设备注册函数snd_pcm_dev_register中,加入全局变量snd_minors数组中,就是告诉声卡,供用户调用的接口。用户层操作时会获取到数组snd_minors的下标,就可以找到相应的次设备是control或者pcm,操作对用文件操作结构体中的函数。

以上api的调用关系:

以上代码我们可以看出,对于一个pcm设备,可以生成两个设备文件,一个用于playback,一个用于capture,代码中也确定了他们的命名规则:

(1)playback  --  pcmCxDxp,通常系统中只有一各声卡和一个pcm,它就是pcmC0D0p

(2)capture  --  pcmCxDxc,通常系统中只有一各声卡和一个pcm,它就是pcmC0D0c

6 pcm设备的open

以从应用程序到驱动层pcm为例一步一步讲解。

6.1 声卡字符设备的注册

在sound/core/sound.c中有alsa_sound_init()函数,定义如下: 

 1 static int __init alsa_sound_init(void)
 2 {
 3     snd_major = major;
 4     snd_ecards_limit = cards_limit;
 5     if (register_chrdev(major, "alsa", &snd_fops)) {
 6         snd_printk(KERN_ERR "unable to register native major device number %d\n", major);
 7         return -EIO;
 8     }
 9     if (snd_info_init() < 0) {
10         unregister_chrdev(major, "alsa");
11         return -ENOMEM;
12     }
13     snd_info_minor_register();
14 #ifndef MODULE
15     printk(KERN_INFO "Advanced Linux Sound Architecture Driver Initialized.\n");
16 #endif
17     return 0;
18 }

register_chrdev中的参数major与之前创建pcm设备是device_create时的major是同一个,这样的结果是,当应用程序open设备文件/dev/snd/pcmCxDxp时,会进入snd_fops的open回调函数。

6.2 打开pcm设备

从上一节中我们得知,open一个pcm设备时,将会调用snd_fops的open回调函数,我们先看看snd_fops的定义:

位于:

1 static const struct file_operations snd_fops =
2 {
3     .owner =    THIS_MODULE,
4     .open =        snd_open,
5     .llseek =    noop_llseek,
6 };

跟入snd_open函数,它首先从inode中取出此设备号,然后以次设备号为索引,从snd_minors全局数组中取出当初注册pcm设备时填充的snd_minor结构(参看linux-alsa详解1基本知识第4节的内容),然后从snd_minor结构中取出pcm设备的f_ops,并且把file->f_op替换为pcm设备的f_ops,紧接着直接调用pcm设备的f_ops->open(),然后返回.因为file->f_op已经被替换,以后,应用程序的所有read/write/ioctl调用都会进入pcm设备自己的回调函数中,也就是5.1.2节中提到的snd_pcm_f_ops结构中定义的回调。

 1 static int snd_open(struct inode *inode, struct file *file)
 2 {
 3     unsigned int minor = iminor(inode);
 4     struct snd_minor *mptr = NULL;
 5     const struct file_operations *old_fops;
 6     int err = 0;
 7 
 8     if (minor >= ARRAY_SIZE(snd_minors))
 9         return -ENODEV;
10     mutex_lock(&sound_mutex);
11     mptr = snd_minors[minor];
12     if (mptr == NULL) {
13         mptr = autoload_device(minor);
14         if (!mptr) {
15             mutex_unlock(&sound_mutex);
16             return -ENODEV;
17         }
18     }
19     old_fops = file->f_op;
20     file->f_op = fops_get(mptr->f_ops);
21     if (file->f_op == NULL) {
22         file->f_op = old_fops;
23         err = -ENODEV;
24     }
25     mutex_unlock(&sound_mutex);
26     if (err < 0)
27         return err;
28 
29     if (file->f_op->open) {
30         err = file->f_op->open(inode, file);
31         if (err) {
32             fops_put(file->f_op);
33             file->f_op = fops_get(old_fops);
34         }
35     }
36     fops_put(old_fops);
37     return err;
38 }

6.3 总结以上过程

下面的序列图表示了应用程序如何最终调用到snd_pcm_f_ops结构中的回调函数:

参考博文:

https://www.cnblogs.com/jason-lu/archive/2013/06/07/3123750.html

posted @ 2020-06-13 19:54  Action_er  阅读(3298)  评论(0编辑  收藏  举报