Python——tensor概念 Pytorch包 深度神经网络 (转)

转自: https://blog.csdn.net/perfect2011/article/details/120255629

pytorch 和tensorflow 中最重要的概念就是tensor了,tensorflow 这个框架的名字中很直白,就是tensor的流动,

所以学习深度学习的第一课就是得搞懂tensor到底是个什么东西。

 

1.tensor到底是啥
tensor 即“张量”。实际上跟numpy数组、向量、矩阵的格式基本一样。但是是专门针对GPU来设计的,可以运行

在GPU上来加快计算效率。

在PyTorch中,张量Tensor是最基础的运算单位,与NumPy中的NDArray类似,张量表示的是一个多维矩阵。不同

的是,PyTorch中的Tensor可以运行在GPU上,而NumPy的NDArray只能运行在CPU上。由于Tensor能在GPU上

运行,因此大大加快了运算速度。

一个可以运行在gpu上的多维数据

x = torch.zeros(5)

 

2.tensor的创建
tensor 概念再怎么高级也只是一个数据结构,一个类,怎么创建这个对象,有下面几种方式。

直接创建
pytorch 提供的创建tensor的方式

torch.tensor(data, dtype=None, device=None,requires_grad=False)

data - 可以是list, tuple, numpy array, scalar或其他类型

dtype - 可以返回想要的tensor类型

device - 可以指定返回的设备

requires_grad - 可以指定是否进行记录图的操作,默认为False

快捷方式创建

t1 = torch.FloatTensor([[1,2],[5,6]])

从numpy中获得数据
numpy是开发中常用的库,所以怎么将numpy中的数据给到tensor中,这个pytorch也提供了接口,很方便

torch.from_numpy(ndarry)
注:生成返回的tensor会和ndarry共享数据,任何对tensor的操作都会影响到ndarry,反之亦然

内置的tensor创建方式
torch.empty(size)返回形状为size的空tensor

torch.zeros(size)全部是0的tensor

torch.zeros_like(input)返回跟input的tensor一个size的全零tensor

torch.ones(size)全部是1的tensor

torch.ones_like(input)返回跟input的tensor一个size的全一tensor

torch.arange(start=0, end, step=1)返回一个从start到end的序列,可以只输入一个end参数,就跟python的range()

一样了。实际上PyTorch也有range(),但是这个要被废掉了,替换成arange了

torch.full(size, fill_value)这个有时候比较方便,把fill_value这个数字变成size形状的张量

torch.randn(5) 随机一个生成一个tensor

 

3、tensor转换
tensor数据的转换在开发中也是常用的,看下常用的两种转换方式

tensor 转为numpy

a = torch.ones(5)
print(a)
b = a.numpy()
print(b)

tensor 转为list

data = torch.zeros(3, 3)
data = data.tolist()
print(data)

 

4、张量的运算
维度提升

tensor的broadcasting是不同维度之间进行运算的一种手段,和不同的数据类型进行运算时的原则差不多,比如整型和

float 进行运算的时候,将数据往精度更高的数据类型进行提升,tensor的维度扩张也是类似。

遍历所有的维度,从尾部维度开始,每个对应的维度大小要么相同,要么其中一个是 1,要么其中一个不存在。不存在

则扩展当前数据,可以看到下图红框部分,就数据进行了扩展.

 

a = torch.zeros(2, 3)
b = torch.ones(3)
print(a)
print(b)
print(a + b)

验证下结果,可以看到最后的结果都是1:

和不同数据类型相加时精度提升一个道理,这里是维度的提升。

 

加法

y = t.rand(2, 3) # 使用[0,1]均匀分布构建矩阵
z = t.ones(2, 3) # 2x3 的全 1 矩阵

# 3 中加法操作等价
print(y + z) ### 加法1
t.add(y, z) ### 加法2
减法
a = t.randn(2, 1)
b = t.randn(2, 1)
print(a)
### 等价操作
print(a - b)
print(t.sub(a, b))
print(a) ### sub 后 a 没有变化

乘法
矩阵的乘法大学的时候都学过,我们简单复习下,交叉相乘,理解原理就行,因为多维度的矩阵乘法更复杂,还是

pytorch提供了支持

t.mul(input, other, out=None):矩阵乘以一个数
t.matmul(mat, mat, out=None):矩阵相乘
t.mm(mat, mat, out=None):基本上等同于 matmul

a=torch.randn(2,3)
b=torch.randn(3,2)
### 等价操作
print(torch.mm(a,b)) # mat x mat
print(torch.matmul(a,b)) # mat x mat
### 等价操作
print(torch.mul(a,3)) # mat 乘以 一个数
print(a * 3)

其他的一些运算
pytorch还支持更多的运算,这些运算就不一一介绍了,在使用的时候测试一下就知道结果了

t.div(input, other, out=None)#:除法
t.pow(input, other, out=None)#:指数
t.sqrt(input, out=None)#:开方
t.round(input, out=None)#:四舍五入到整数
t.abs(input, out=None)#:绝对值
t.ceil(input, out=None)#:向上取整
t.clamp(input, min, max, out=None)#:把 input 规范在 min 到 max 之间,超出用 min 和 max 代替,可理解为削尖函数
t.argmax(input, dim=None, keepdim=False)#:返回指定维度最大值的索引

 


总结
tensor是深度学习的基础,也是入门的,可以简单的理解为一个多维的数据结构,并且内置了一些特殊运算。

posted @ 2022-02-16 17:05  会飞的斧头  阅读(1498)  评论(0编辑  收藏  举报