极大似然估计的理解与应用

极大似然估计是概率论中一个很常用的估计方法,在机器学习中的逻辑回归中就是基于它计算的损失函数,因此还是很有必要复习一下它的相关概念的。

背景

先来看看几个小例子:

  • 猎人师傅和徒弟一同去打猎,遇到一只兔子,师傅和徒弟同时放枪,兔子被击中一枪,那么是师傅打中的,还是徒弟打中的?
  • 一个袋子中总共有黑白两种颜色100个球,其中一种颜色90个,随机取出一个球,发现是黑球。那么是黑色球90个?还是白色球90个?

看着两个小故事,不知道有没有发现什么规律...由于师傅的枪法一般都高于徒弟,因此我们猜测兔子是被师傅打中的。随机抽取一个球,是黑色的,说明黑色抽中的概率最大,因此猜测90个的是黑色球。

他们有一个共同点,就是我们的猜测(估计),都是基于一个理论:概率最大的事件,最可能发生

其实我们生活中无时无刻不在使用这种方法,只是不知道它在数学中是如何确定或者推导的。而在数理统计中,它有一个专业的名词:

极大似然估计(maximum likelihood estimation, MLE),通俗的说就是 —— 最像估计法(最可能估计法)

数学过程

极大似然原理与数学表示

官方一点描述上面的过程,即:有n个实验结果,AiAn,如果Aj发生了,则意味着Aj发生的概率最大。

即,一次试验就发生的事件,这个事件本身发生概率最大

PS

举个例子,我们在学校衡量学习成绩的标准就是考试成绩,高考更是一考定终身的感觉。高考成绩的好坏,则可以当做一个学生能力的体现,虽然有的人考试紧张考砸了,有的人超常发挥了,但是从概率上来说,高考的成绩基本可以判断这个人的(学习)能力。基于极大似然的解释就是,我们高考的成绩很大程度上反应了平时的学习能力,因此考得好的(当前发生的事件),可以认为是学习好的(所有事件发生概率最大的)。

再抽象一点,如果事件发生是关于 θ 参数的,那么一次事件放生时,样本为x1,...xk,那么θ^(x1,...xk)就是θ的估计值。当θ=θ^(x1,...xk)时,当前样本发生的概率最大。

PS

再举个射箭的例子,在《权力的游戏》中有个场景,老徒利死的时候,尸体放在穿上,需要弓箭手在岸边发射火箭引燃。但是当时的艾德慕·徒利公爵射了三箭都没中,布林登·徒利实在看不下去了,通过旗帜判断风向,一箭命中!
因此箭能否射中靶心,不仅跟弓箭手的瞄准能力有关,还跟外界的风向有关系。假设不考虑人的因素,但看风向...同样的瞄准和力度,风太大不行、太小也不行....那我们给风的大小设置一个值为θ。假设一名弓箭手射出了三只箭,分别是8环、6环、7环(即x1=8,x2=6,x3=7),当天风的大小为88。那么我们认为只有θ=88,发生上面事件的概率最大。

极大似然估计法

如果总体X为离散型

假设分布率为P=p(x;θ),x是发生的样本,θ是代估计的参数,p(x;θ)表示估计参数为θ时,发生x的的概率。

那么当我们的样本值为:x1,x2,...,xn时,

L(θ)=L(x1,x2,...,xn;θ)=i=1np(xi;θ)

其中L(θ)成为样本的似然函数。

假设

L(x1,x2,...,xn;θ^)=maxθΘL(x1,x2,...,xn;θ)

θ^ 使得 L(θ) 的取值最大,那么 θ^就叫做参数 θ 的极大似然估计值。

如果总体X为连续型

基本和上面类似,只是概率密度为f(x;θ),替代p。

解法

  1. 构造似然函数L(θ)
  2. 取对数:lnL(θ)
  3. 求导,计算极值
  4. 解方程,得到θ

解释一下,其他的步骤很好理解,第二步取对数是为什么呢?

因为根据前面你的似然函数公式,是一堆的数字相乘,这种算法求导会非常麻烦,而取对数是一种很方便的手段:

  • 由于ln对数属于单调递增函数,因此不会改变极值点
  • 由于对数的计算法则:lnab=blnalnab=lna+lnb ,求导就很方便了

例子这里就不举了,感兴趣的话,可以看看参考的第二篇里面有好几个求解极大似然估计的例子。

参考

posted @   xingoo  阅读(24036)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2014-02-05 邻接图的深度广度优先遍历
2014-02-05 矩阵图的深度广度遍历
点击右上角即可分享
微信分享提示