hdu 4089 Activation 概率DP

思路:

分析题意,可以得到如下递推关系:

dp[i][j]表示i个人排队,Tomato在j位置的概率

 

j=1 时,dp[i][j] = p1*dp[i][j]+p2*dp[i][i]+p4;

 

2<=j<=k 时,dp[i][j] = p1*dp[i][j]+p2*dp[i][j-1]+p3*dp[i-1][j-1]+p4;

 

k<j 时,dp[i][j] = p1*dp[i][j]+p2*dp[i][j-1]+p3*dp[i-1][j-1];

 

令 p21=p2/(1-p1) ; p31=p3/(1-p1) ; p41=p4/(1-p1)

则整理得到:

j=1 , dp[i][j] = p21*dp[i][i]+p41;

2<=j<=k , dp[i][j] = p21*dp[i][j-1]+p31*dp[i-1][j-1]+p41;

k<j , dp[i][j] = p21*dp[i][j-1]+p31*dp[i-1][j-1].

由于在求dp[i][j]时,dp[i-1][j-1]已经求出故可以当作常数,则:

dp[i][j]=p21*dp[i][j-1]+c[j],(c[1]=p41)

迭代会发现形成了环,故只需将各式叠加

则有:dp[i][j] = (c[i]+p21*c[i-1]+p21^2*c[i-2]+……+p21^(i-1)*c[1])/(1-p21^i).

再就是要特判一下p4!!!

代码如下:

 

 1 #include<iostream>
 2 #include<stdio.h>
 3 #include<algorithm>
 4 #include<iomanip>
 5 #include<cmath>
 6 #include<cstring>
 7 #include<vector>
 8 #define ll __int64
 9 #define pi acos(-1.0)
10 #define MAX 2005
11 using namespace std;
12 double dp[MAX][MAX],c[MAX];
13 int main(){
14     int n,m,k,i,j;
15     double p1,p2,p3,p4,p21,p31,p41,temp,p;
16     while(scanf("%d%d%d%lf%lf%lf%lf",&n,&m,&k,&p1,&p2,&p3,&p4)!=EOF){
17         if(p4<1e-8){
18             printf("0.00000\n");
19             continue;
20         }
21         p21=p2/(1-p1);
22         p31=p3/(1-p1);
23         p41=p4/(1-p1);
24         dp[1][1]=p41/(1-p21);
25         c[1]=p41;
26         for(i=2;i<=n;i++){
27             for(j=2;j<=i;j++){
28                 c[j]=p31*dp[i-1][j-1];
29                 if(j<=k) c[j]+=p41;
30             }
31             temp=1.0;p=0.0;
32             for(j=i;j>=1;j--){
33                 p+=temp*c[j];
34                 temp*=p21;
35             }
36             dp[i][i]=p/(1-temp);
37             dp[i][1]=p21*dp[i][i]+p41;
38             for(j=2;j<i;j++){
39                 dp[i][j]=p21*dp[i][j-1]+c[j];
40             }
41         }
42         printf("%.5lf\n",dp[n][m]);
43     }
44     return 0;
45 }
View Code

 

 

posted @ 2013-08-08 11:11  _随心所欲_  阅读(170)  评论(0编辑  收藏  举报