spark2.4 分布式安装

一.Spark2.0的新特性
Spark让我们引以为豪的一点就是所创建的API简单、直观、便于使用,Spark 2.0延续了这一传统,并在两个方面凸显了优势:
  1、标准的SQL支持;
  2、数据框(DataFrame)/Dataset (数据集)API的统一。

  在SQL方面,我们已经对Spark的SQL功能做了重大拓展,引入了新的ANSI SQL解析器,并支持子查询功能。Spark 2.0可以运行所有99个TPC-DS查询(需求SQL:2003中的很多功能支持)。由于SQL是Spark应用所使用的主要接口之一,对SQL功能的拓展大幅削减了将遗留应用移植到Spark时所需的工作。

在编程API方面,我们合理化了API:

  1、在Scala/Java中统一了DataFrames与Dataset:从Spark 2.0开始,DataFrames只是行(row)数据集的typealias了。无论是映射、筛选、groupByKey之类的类型方法,还是select、groupBy之类的无类型方法都可用于Dataset的类。此外,这个新加入的Dataset接口是用作Structured Streaming的抽象,由于Python和R语言中编译时类型安全(compile-time type-safety)不属于语言特性,数据集的概念无法应用于这些语言API中。而DataFrame仍是主要的编程抽象,在这些语言中类似于单节点DataFrames的概念,想要了解这些API的相关信息,请参见相关笔记和文章。

  2、SparkSession:这是一个新入口,取代了原本的SQLContext与HiveContext。对于DataFrame API的用户来说,Spark常见的混乱源头来自于使用哪个“context”。现在你可以使用SparkSession了,它作为单个入口可以兼容两者,点击这里来查看演示。注意原本的SQLContext与HiveContext仍然保留,以支持向下兼容。
更简单、性能更佳的Accumulator API:我们设计了一个新的Accumulator API,不但在类型层次上更简洁,同时还专门支持基本类型。原本的Accumulator API已不再使用,但为了向下兼容仍然保留。

  3、基于DataFrame的机器学习API将作为主ML API出现:在Spark 2.0中,spark.ml包及其“管道”API会作为机器学习的主要API出现,尽管原本的spark.mllib包仍然保留,但以后的开发重点会集中在基于DataFrame的API上。

  4、机器学习管道持久化:现在用户可以保留与载入机器学习的管道与模型了,Spark对所有语言提供支持。查看这篇博文以了解更多细节,这篇笔记中也有相关样例。
R语言的分布式算法:增加对广义线性模型(GLM)、朴素贝叶斯算法(NB算法)、存活回归分析(Survival Regression)与聚类算法(K-Means)的支持。

二.Spark2.4 安装
环境要求jdk 1.8以上版本,scala-2.12以上
基于的Hadoop版本,我的现有hadoop为2.6
官网下载时注意:http://spark.apache.org/downloads.html

安装架构
h220 为主节点
H221,h222 为从节点
1.解压缩spark
[hadoop@h220 spark]$ cp spark-2.4.1-bin-hadoop2.6.tgz /home/hadoop/
[hadoop@h220 ~]$ tar -zxvf spark-2.4.1-bin-hadoop2.6.tgz
2.安装jdk,scala
[hadoop@h220 usr]$ tar -zxvf jdk-8u151-linux-x64.tar.gz
[hadoop@h220 ~]$ tar -zxvf scala-2.12.4.tgz
3.设置环境变量
[hadoop@h220 ~]$ vi .bash_profile
export JAVA_HOME=/usr/jdk1.8.0_151
export JAVA_BIN=/usr/jdk1.8.0_151/bin
export SCALA_HOME=/home/hadoop/scala-2.12.4
export SPARK_HOME=/home/hadoop/spark-2.4.1-bin-hadoop2.6

[hadoop@h220 ~]$ source .bash_profile

4.配置spark
[hadoop@h220 ~]$ cd spark-2.4.1-bin-hadoop2.6/conf/
[hadoop@h220 conf]$ cp spark-env.sh.template spark-env.sh
[hadoop@h220 conf]$ vi spark-env.sh
添加:
export JAVA_HOME=/usr/jdk1.8.0_151
export SCALA_HOME=/home/hadoop/scala-2.12.4
export SPARK_MASTER_IP=h220
export SPARK_WORDER_INSTANCES=1
export SPARK_WORKER_CORES=1
export SPARK_WORKER_MEMORY=1g
export HADOOP_HOME=/home/hadoop/hadoop-2.6.0-cdh5.5.2
export HADOOP_CONF_DIR=/home/hadoop/hadoop-2.6.0-cdh5.5.2/etc/hadoop

[hadoop@h220 conf]$ cp slaves.template slaves
[hadoop@h220 conf]$ vi slaves
删除localhost
添加:
h221
h222

5.copy到从节点
配置ssh证书
[hadoop@h220 ~]$ scp -r spark-2.4.1-bin-hadoop2.6 h221:/home/hadoop/
[hadoop@h220 ~]$ scp -r spark-2.4.1-bin-hadoop2.6 h222:/home/hadoop/

6.启动,验证
主节点:
[hadoop@h220 spark-2.4.1-bin-hadoop2.6]$ sbin/start-all.sh
[hadoop@h220 spark-2.4.1-bin-hadoop2.6]$ jps
6970 Master
从节点:
[hadoop@h221 spark-2.4.1-bin-hadoop2.6]$ jps
3626 Worker
主节点:
[hadoop@h220 spark-2.4.1-bin-hadoop2.6]$ bin/spark-shell
没有报错

posted @ 2019-04-22 14:55  西瓜哥119  阅读(992)  评论(0编辑  收藏  举报