优化+压缩

1、MapReduce运行慢的原因
1、计算机性能
CPU、内存、磁盘健康、网络
2、I/O操作优化
数据倾斜
Map和reduce数设置不合理
reduce等待过久
小文件过多
大量的不可分块的超大文件
spill次数过多
merge次数过多

2、MapReduce优化方法
1、数据输入
1、合并小文件:在执行mr任务前将小文件进行合并,大量的小文件会产生大量的map任务,增大map任务装载次数,而任务的装载比较耗时,从而导致 mr 运行较慢。
2、采用CombinerFileInputFormat来作为输入,解决输入端大量小文件场景
2、Map阶段
1)减少spill次数:通过调整io.sort.mb及sort.spill.percent参数值,增大触发spill的内存上限,减少spill次数,从而减少磁盘 IO。
2)减少merge次数:通过调整io.sort.factor参数,增大merge的文件数目,减少merge的次数,从而缩短mr处理时间。
3)在 map 之后先进行combine处理,减少 I/O。
3、Reduce阶段
1)合理设置map和reduce数:两个都不能设置太少,也不能设置太多。太少,会导致task等待,延长处理时间;太多,会导致 map、reduce任务间竞争资源,造成处理超时等错误。
2)设置map、reduce共存:调整slowstart.completedmaps参数,使map运行到一定程度后,reduce也开始运行,减少reduce的等待时间。
3)规避使用reduce,因为Reduce在用于连接数据集的时候将会产生大量的网络消耗。
4)合理设置reduc端的buffer,默认情况下,数据达到一个阈值的时候,buffer中的数据就会写入磁盘,然后reduce会从磁盘中获得所有的数据
4、IO传输
1)采用数据压缩的方式,减少网络IO的的时间。安装Snappy和LZOP压缩编码器。
2)使用SequenceFile二进制文件
5、数据倾斜问题
1、数据倾斜现象
数据频率倾斜——某一个区域的数据量要远远大于其他区域。
数据大小倾斜——部分记录的大小远远大于平均值
2、如何收集倾斜数据
在reduce方法中加入记录map输出键的详细情况的功能。
3、减少数据倾斜的方法
1、抽样和范围分区
可以通过读原始数据进行抽样得到的结果集来预设分区边界值
2、自定义分区
另一个抽样和范围分区的替代方案是基于输出键的背景知识进行自定义分区
3、Combine
使用Combine可以大量地减小数据频率倾斜和数据大小倾斜。在可能的情况下,combine的目的就是聚合并精简数据。
4、采用Map Join。尽量避免Reduce Join
6、调优参数

3、HDFS小文件优化
1、HDFS小文件弊端
2、解决方案
1、Hadoop Archive
 是一个高效地将小文件放入HDFS块中的文件存档工具,它能够将多个小文件打包成一个HAR文件,这样在减少namenode内存使用的同时。
2、SeQuence file
sequence file由一系列的二进制key/value组成,如果key为文件名,value为文件内容,则可以将大批小文件合并成一个大文件。
3、CombineFileInputFormat
CombineFileInputFormat是一种新的inputformat,用于将多个文件合并成一个单独的split,另外,它会考虑数据的存储位置。
4、开启JVM重用
对于大量小文件Job,可以开启JVM重用会减少45%运行时间。

4、数据压缩
1、概述
运算密集型的job,少用压缩
IO密集型的job,多用压缩
2、MR支持压缩编码格式
3、各种压缩方式
1、Gzip压缩
优点:压缩率比较高,而且压缩/解压速度也比较快;hadoop本身支持,在应用中处理gzip格式的文件就和直接处理文本一样;大部分linux系统都自带gzip命令,使用方便。
缺点:不支持split
应用场景:当每个文件压缩之后在130M以内的(1个块大小内),都可以考虑用gzip压缩格式。譬如说一天或者一个小时的日志压缩成一个gzip文件,运行mapreduce程序的时候通过多个gzip文件达到并发。hive程序,streaming程序,和java写的mapreduce程序完全和文本处理一样,压缩之后原来的程序不需要做任何修改。
2、lzo压缩
优点:压缩/解压速度也比较快,合理的压缩率;支持split,是hadoop中最流行的压缩格式;可以在linux系统下安装lzop命令,使用方便。
缺点:压缩率比gzip要低一些;hadoop本身不支持,需要安装;在应用中对lzo格式的文件需要做一些特殊处理(为了支持split需要建索引,还需要指定inputformat为lzo格式)。
应用场景:一个很大的文本文件,压缩之后还大于200M以上的可以考虑,而且单个文件越大,lzo优点越越明显。
3、snappy压缩
优点:高速压缩速度和合理的压缩率
缺点:不支持split;压缩率比Gzip要低;Hadoop本身不支持,需要安装
应用场景:当mapreduce作业的map输出的数据比较大的时候,作为map到reduce的中间数据的压缩格式;或者作为一个mapreduce作业的输出和另外一个mapreduce作业的输入。
4、bzip2压缩
优点:支持split;具有很高的压缩率,比gzip压缩率都高;hadoop本身支持,但不支持native;在linux系统下自带bzip2命令,使用方便。
缺点:压缩/解压速度慢;不支持native
应用场景:适合对速度要求不高,但需要较高的压缩率的时候,可以作为mapreduce作业的输出格式;或者输出之后的数据比较大,处理之后的数据需要压缩存档减少磁盘空间并且以后数据用得比较少的情况;或者对单个很大的文本文件想压缩减少存储空间,同时又需要支持split,而且兼容之前的应用程序(即应用程序不需要修改)的情况。
5、压缩格式的选择
1、使用容器文件格式,例如顺序文件、RCFile或者Avro 数据文件,所有这些文件格式同时支持压缩和切分。通常最好与一个快速压缩工具联合使用,例如LZO,LZ4或者 Snappy。
 2)使用支持切分的压缩格式,例如bzip2(尽管bzip2 非常慢),或者使用通过索引实现切分的压缩格式,例如LZO。
3)在应用中将文件切分成块,并使用任意一种压缩格式为每个数据块建立压缩文件(不论它是否支持切分)。这种情况下,需要合理选择数据块的大小,以确保压缩后数据块的大小近似与HDFS块的大小。
4)存储未经压缩的文件。
对大文件来说,不要使用不支持切分整个文件的压缩格式,因为会失去数据的本地特性,进而造成MapReduce应用效率低下。

posted @ 2021-09-15 16:43  tonggang_bigdata  阅读(67)  评论(0编辑  收藏  举报